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ABSTRACT 

Three major issues in pattern recognition and data analysis have been addressed in this 

study and applied to the problem of identification of volatile organic compounds (V(X^) for 

gas sensing applications. Various approaches have been proposed and discussed. These ap­

proaches are not only applicable to the VOC identification, but also to a variety of pattern 

recognition and data analysis problems. In particular, 

• enhancing pattern separability for challenging classification problems, 

• optimum feature selection problem, and 

• incremental learning for neural networks 

have been investigated. 

Three different approaches are proposed for enhancing pattern .separability for classifica­

tion of closely spaced, or possibly overlapping clusters. In the neurofiizzy approach, a fuzzy 

inference system that considers the dynamic ranges of individual features is developed. Fea­

ture range stretching (FRS) is introduced as an alternative approach for increasing interclus-

ter distances by mapping the tight dynamic range of each feature to a wider range through a 

nonlinear function. Finally, a third approach, nonlinear cluster transformation (NCT), is pro­

posed, which increases intercluster distances while preserving intracluster distances. It is 

shown that NCT achieves comparable, or better, performance than the other two methods at a 

fraction of the computational burden. The implementation issues and relative advantages and 

disadvantages of these approaches are systematically investigated. 
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Selection of optimum features is addressed using both a decision tree based approach, 

and a wrapper approach. The hill-climb search based wrapper approach is applied for selec­

tion of the optimum features for gas sensing problems. 

Finally, a new method, Leam-H-, is proposed that gives classification algorithms, the ca­

pability of incrementally learning from new data. Leam-H- is introduced for incremental 

learning of new data, when the original database is no longer available. Leam-H- algorithm is 

based on strategically combining an ensemble of classifiers, each of which is trained to learn 

only a small portion of the pattern space. Furthermore, Leam-H- is capable of teaming new 

data even when new classes are introduced, and it also features a built-in mechanism for es­

timating the reliability of its classification decision. 

All proposed methods are explained in detail and simulation results are discussed along 

with directions for tliture work 
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CHAPTER 1 

INTRODUCTION 

1.1 Emerging Interdisciplinary Problems 

As we enter the 21" century, our technological advancements allow us to solve increas­

ingly complicated and challenging problems, which can no longer be solved by professionals 

with a single area of expertise. As a direct consequence of this, traditional boundaries among 

different disciplines are disappearing at a remarkable pace. Researchers and professionals in 

various disciplines now realize that their work, once thought of as independent or unrelated 

to other fields, can no longer be isolated from other disciplines. This is simply because the 

challenges we face today are of truly interdisciplinary nature. Such challenges require that 

researchers and professionals collaborate with their colleagues in other disciplines, since 

overcoming these challenges requires expert knowledge of various fields. Probably one of 

the truly notable benefits of this cooperation is that it allows collaborators to learn about each 

other's fields, which in turn allows rapid proliferation of interdisciplinary problem solving 

techniques. 

This dissertation is a prime example of such collaboration. The problem undertaken is the 

automated identification of volatile organic compounds (VOCs), which enjoys increasing 

importance and attention among analytical chemists; however, a closer look at how such a 

system can be realized, and what it is capable of above and beyond identifying VOCs, re­

veals the true interdisciplinary nature of the problem. 
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First, identification of VOCs requires a physically measurable response, which is typi­

cally a signal of electrical origin, to be detected and recorded. Successful detection of a sig­

nal, however, requires various filtering and denoising schemes, which calls for expertise in 

signal processing, the first clue that the problem is closely related to electrical engineering. 

Furthermore, automated identification of signals calls for yet another area of electrical engi­

neering, namely pattern recognition. In addition, novel pattern recognition techniques are re­

sults of joint efforts in artificial intelligence and machine learning, which are areas of major 

research interest in computer science. Finally, successful identification of VOCs can suggest 

innovative methods for the more general problem of gas sensing. This in turn can guide us in 

our efforts in modeling and artificially implementing the last human sensory system that is 

not yet electronically or mechanically implemented: the olfactory system. Hence, automated 

identification of VOCs, in fact encompasses the fields of computer science, anatomy, physi­

ology, electrical engineering and biomedical engineering, as well as analytical chemistry. 

In this dissertation, all aspects of this problem as they relate to the above listed fields ore 

investigated and discussed. The experimental procedures followed for obtaining physically 

measurable signals from VOCs, the properties of the chemicals used, and how such a VOC 

identification system relates to mammalian olfactory system are all discussed in the introduc­

tory chapters of this dissertation. Pattern recognition schemes developed for enhancing sepa­

rability of patterns of overlapping clusters, selection of optimum features for successful pat­

tern recognition, and the algorithm developed for incremental learning of new data constitute 

the electrical engineering, artificial intelligence and computer science aspects of this work. 
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1.2 Background and Motivation 

Identification and quantification of volatile organic compounds (VOCs) are of crucial 

importance for environmental monitoring of air, soil and groundwater, as well as for many 

industries and organizations, particularly for those involved in various applications of gas 

sensing. VOC molecules are detected by piezoelectric quartz crystals, which respond to gas 

exposure as a shifted resonant frequency. The frequency responses of crystals to various 

VOCs are then used to identity the VOCs by appropriate signal processing and pattern rec­

ognition techniques. 

As shown by many researchers, a solution to the problem of detecting and identifying 

VOCs is also a solution to the problem of detecting and identifying many other gases, 

whether these gases are emitted from food items, anti-personnel mines, hazardous chemicals, 

or illegal drugs and plastic bombs. Developing such a system is therefore of great interest to 

• food industries for testing the quality or wholesomeness of a particular food 

product [I, 2, 3], 

• military and humanitarian organizations for locating buried landmines [4], 

• petrochemical industries and gas valve manufacturing companies for detecting and 

identifying hazardous gases [S, 6, 7, 8,9], 

• airport security and customs inspection for detecting illegal drugs and plastic bombs 

[10], etc. 

As a consequence of the increasing interest in gas sensing over the last 15 years, a grow­

ing number of experimental techniques and signal processing algorithms have been devel­

oped for improving signal quality, and a number of pattern recognition algorithms have been 

developed for identification and classification of VOCs, as well as other gases. 
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The experimental techniques and signal processing algorithms have mainly targeted the 

enhancement of signal to noise ratio in sensor responses and extracting important features 

from sensor responses so that they can be accurately identified by using subsequent pattern 

recognition techniques. Such experimental techniques include preconcentration of gases [6], 

and precise controlling of VOC flow fluctuations [11], whereas signal processing algorithms 

include driit compensation [12], improving gas sensor response time and signal separability 

through transient analysis [13,14]. Various well established signal processing techniques 

such as Gram - Schmidt orthogonalization, Fourier and wavelet analysis [15] have also been 

used. Modeling schemes, such as olfactory modeling [15], computational chemistry [16], and 

electrical circuit equivalents of crystals [17] have been tried for simulating and predicting the 

responses of the crystals. 

Among pattern recognition algorithms, cluster analysis and principal component analysis 

(PCA) [1, 2, 3, 5, 6, 18, 19, 20, 21], extended disjoint principal components regression [22], 

k-means, [23] various neural network architectures [19, 21, 24, 25, 26, 27, 28, 29, 30, 31], 

neuroftizzy approaches [29, 32, 33, 34, 35] and more recently genetic algorithms [36] have 

achieved significant success for the VOC identification problem. As VOC identification im­

proved, attention was directed to more challenging issues, such as identification of VOCs in 

mixtures [7, 22, 37, 38, 39], and/or in environments of varying temperature and humidity [40, 

41,42], or under the soil [43]. In particular, identification of VOCs in mixtures has proven to 

be exceptionally difficult due to competing interactions between the individual components 

of the mixture and the coating material. Such competition results in patterns that significantly 

overlap in the feature space, which considerably complicates the classification problem. 
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Since the performance of even the best pattern recognition algorithm is always limited by 

the quality of the data it is applied to, it is evident that the coating selection must be made 

strategically. Intelligent selection of the coatings, tailored towards the chemical and physical 

properties of the VOCs to be detected, can significantly simplify the identiflcation of the 

VOCs. Therefore, utmost care must be shown to select the optimal set of coatings for the par­

ticular application. 

There are two stages for choosing an optimum set of coatings. First, potentially useful 

coatings with desired chemical and physical properties are determined based on the solubility 

properties of the VOCs. Although the procedure for doing so is well established in the ana­

lytical chemistry conununity [44,45,46], determining the best set of coatings among the po­

tentially useful ones is a daunting task, due to overwhelmingly large combinations of possi­

ble coatings. Therefore, an optimization scheme is required to choose the optimum and the 

smallest subset of the potentially useful coatings [22]. 

Another important issue in identification of VOCs through pattern recognition that has 

not been addressed so far is the problem of integrating a new set of data that may later be­

come available. This problem emerges when a previously designed pattern recognition algo­

rithm trained with existing data achieves poor performance with similar data obtained from a 

different site, or obtained under slightly different conditions. To make the problem even 

more challenging, it might be necessary to be able to identify additional VOCs which were 

previously not present. 

It is interesting to note that the above mentioned issues are special cases of age-old prob­

lems in the areas of signal processing, pattern recognition and cognitive learning. In particu­

lar, identification of mixtures of VOCs has been a very challenging problem due to overlap­



www.manaraa.com

6 

ping of signature patterns of VOCs; therefore, it is a special case of the more general problem 

of enhancing pattern separability for classification. Similarly, selection of optimum coatings 

is a special case of the optimal feature selection problem, and the ability to incorporate new 

data into an existing classifier is a special case of incremental learning. All three issues men­

tioned above are of significant interest to pattern recognition, artificial intelligence, cognitive 

learning, and neural network communities. 

The final cumulative goal of the research in the gas sensing area is developing a sensory 

device, complete with its hardware and software, to detect, identify and quantify various 

odors of interest in the environment. Such a device, mimicking the mammalian olfactory sys­

tem, is affectionately referred to as the electronic nose. 

This research started out with a modest goal of identifying Individual VOCs from their 

signature patterns. However, it grew and evolved significantly over the last few years, not 

only to solve the issues related to VOC identification, but also to solve the above listed more 

general and challenging problems. 

1.3 Organization of tiie Dissertation 

Several methods have been developed to address the issues discussed above and the pro­

posed approaches along with results are presented in this dissertation: Chapter 2 presents a 

comprehensive review of the mammalian olfactory system which any electronic nose system 

is expected to replicate. In particular, the human olfactory system is presented to set a 

benchmark for current and future electronic nose systems. A comparison between the ana­

tomical structures used in the mammalian olfactory system and the devices / procedures that 

are used to replicate these structures are discussed. Individual components of state-of-the-art 
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electronic nose systems are introduced and described. Finally, commercially available current 

electronic nose systems are introduced. 

Chapter 3 first provides the necessary chemistry background for gas sensing, in particular 

as it applies to VOC detection using polymer coated quartz crystal microbalances. A review 

of chemical and physical properties of coatings and those of VOCs that need to be considered 

for making coating selection is given. Finally, the separability issues and the problem of 

overlapping clusters regarding this database are also explained. 

Techniques for enhancing pattern separability that are developed are discussed in Chapter 

4. These techniques are mainly applied to identification of mixtures of VOCs though they are 

applicable to any pattern recognition problem. Three different methods are proposed, tested 

and compared, namely, tuzzy processing, feature range stretching, and nonlinear cluster 

transformation. 

Existing schemes for optimal selection of coatings are first reviewed in Chapter 5, fol­

lowed by two approaches that were developed to reduce the computational complexity of the 

existing schemes. 

The problem of incorporating new information into a classifier is investigated in Chapter 

6, in the context of incremental learning. A theoretical upper bound for Leam-H-'s training 

error is derived. The performance of Leam++ on incrementally learning new data, which 

may include new classes, is presented not only for the VOC database, but also for a number 

of synthetic and real world databases. 

Conclusions and discussions are finally given in Chapter 7, along with directions for fu­

ture research in related areas. The overall structure of this work is illustrated in Figure l.l. 

Due to the independent nature of the individual issues addressed in this research, each chap­
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ter is further divided into its own subsection of introduction and literature review, method, 

results, discussion and conclusions. 

I ! I ( I R O N K  N O S r  

V ( ) (  1 ) 1 '  I  ! (  H O N  A M )  I D I v M  I M (  A  H O N  

H A R D W  A K l  
I  i l i o n  )  

S O I  1  W A R !  
I  I d t  n t i f K  i  

I i-.iriiiiiL; 

nc 
\ ( )( s 

t (i;il llU's 
IIIIIIIIIIIJ 

 ̂ 1 
Fu/zy (nlerence Feature Ranj^e Nonlinear Decision 

System StrclchinR Cluster free 
Transformation 

Hill Climb Incremental 
Heuristic Learnin}; 
Scarch Learn++ 

Scope of the work presented in this dissertation 

Figure 1.1 Overall structure of the VOC detection and identification problem 
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CHAPTER 2 

THE MAMMALIAN OLFACTORY SYSTEM 

AND 

THE QUEST FOR ELECTRONIC NOSE 

2.1 Introduction 

Many of the topics investigated in this research have arisen from the gas identification 

problem, the ultimate goal of which is to be able to build an electronic nose for various gas 

sensing applications. This endeavor of emulating the olfactory system, however, is a daunt­

ing task, considering the complexity of the system. In order to appreciate the complexity and 

the preciseness of this system and to set a performance benchmark, this chapter is mainly de­

voted to olfactory physiology. 

The environment we live in has a wealth of chemical information, and most species are 

equipped with a sensory system to make the most of this chemical information. This system, 

known as the olfactory system, provides a very powerful means of chemical communication 

among various species, particularly among mammals. 

Mammals have one of the most advanced olfactory organs among all species, because for 

many mammals olfaction is the prime way of communication to attract others of the same 

species or to detect predators and hazardous conditions, as well as for mating, marking terri­

tory, etc. Although the human olfactory system is significantly less complicated than those of 

some other mammals (such as cats, dogs, rabbits, etc.), it is still far more sophisticated than 

any electronic nose system available today. 
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Various introductory topics regarding olfactory physiology are reviewed in this chapter. 

In particular, the anatoniy of the human olfactory system is given in Section 2.2. The physi­

ology of olfaction in mammals is then explained in Section 2.3, which includes discussions 

on olfactory stimulation, the structure of olfactory receptors and the physiological procedure 

for signal transduction (converting the chemical information to an electrical signal). Olfac­

tory pathways for transmitting the odorant information to be processed in brain are discussed 

in Section 2.4, whereas the sensitivity and the selectivity of olfactory receptors in resolving 

various odors are given in Section 2.S. The first five sections of this chapter are meant to be a 

comprehensive overview of the human olfactory system and have been compiled from vari­

ous texts including [47, 48,49, 50, 51, 52, 53]. In Section 2.6, a brief overview of the emerg­

ing electronic nose technologies are presented, where individual components of a typical 

electronic nose system are discussed and compared to those that are present in the olfactory 

system. A list of commercially available electronic nose systems is also provided in this sec­

tion. 

2.2 The Anatomy of the Olfactory System 

Olfaction occurs as a result of the interaction between the odorant molecules and the ol­

factory receptors, which are located in the superior region of the nasal cavity. It should be 

noted that most of the nasal cavity is devoted to respiration, with only a small region on the 

roof of the nasal cavity, called the olfactory recess, involved in olfaction. The actual recep­

tors employed in detection of the odor are called olfactory receptor cells, which are located 

in a specialized epithelial layer, called the olfactory epithelium. There are approximately 10 ~ 



www.manaraa.com

11 

20 million olfactory receptor cells within the olfactory epithelium. Each receptor cell is actu­

ally a neuron, and therefore olfactory receptors are also called olfactory neurons [50]. 

Olfactory neurons are quite unique among all other neurons in many aspects. First, olfac­

tory neurons are bipolar neurons. Their axons and dendrites extend from opposite sides of the 

cell body (soma). Bipolar neurons are only found in sensory organs acting as receptors. Sec­

ond, olfactory neurons are the only neurons that can constantly replace themselves. In fact, 

the entire olfactory epithelium degenerates and is lost every sixty days, only to be reproduced 

by basal cells. Olfactory receptor neurons, along with basal cells, and supporting (sustante-

cular) cells constitute the three major cell types present in the olfactory system, as shown in 

Figure 2.1. Olfactory neurons ore sandwiched between the cushioning columnar supporting 

cells, which make up the most of the olfactory epithelium. A yellowish-brown pigment con­

tained in supporting cells gives the characteristic color to the olfactory epithelium. 

Each olfactory receptor has an extensive network of dendrites, from which several long 

hairlike processes called cilia radiate. Cilia are roughly 2 ^m long with a diameter of 0.1 ^m. 

There are approximately 10 - 20 cilia per neuron, and their main function is to increase the 

receptive surface area of the olfactory neurons. It should be noted that although the surface 

area of the olfactory epithelium is about 5 cm", the total surface area including the cilia is 

larger than a typical human body. As a comparison, the surface area of the olfactory epithe­

lium of a dog is 72 times that of a human [50, 53]. 
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Scattered around the axons of the olfactory neurons are the Bowman's glands, which pro­

duce the mucus layer covering the olfactory epithelium. The mucus, a polysaccharide solu­

tion that contains various enzymes, antibodies, salts and special proteins, constantly covers 

the olfactory epithelium, and it is renewed every ten minutes. The special proteins in the mu­

cus are the odorant binding proteins, which facilitate the interaction of odorant molecules 

with the olfactory neurons. 

Note that the nasal cavity provides an access to the brain, and therefore, a strong line of 

defense is needed to protect the brain and the central nervous system. Antibodies within the 

mucus provide this defense mechanism for the immune system. They play an essential role 

in killing viruses and bacteria that may be present in the breathed air [49]. 

The axons of the olfactory neurons (also known as primary olfactory neurons) are assem­

bled together into small fascicles, which collectively form the fiber bundles of the olfactory 

nerve. These bundles of olfactory neurons then penetrate through the cribriform plate of the 

ethmoid bone to enter the region called the olfactory bulb, where they synapse with secon­

dary olfactory neurons. There are two kinds of secondary neurons, namely mitral cells and 

tufted cells. Mitral cells and tufted cells play an active role in refining and transmitting the 

olfactory information to the brain through olfactory tracts. The complex structures formed as 

a result of the synapses between primary and secondary neurons are called glomeruli. Typi­

cally, axons from olfactory neurons with specific types of receptors converge on a specific 

glomerulus, hinting that there is a coding mechanism between types of receptors and individ­

ual glomeruli. Each glomerulus receives approximately 25,000 inputs from receptor neurons, 

and several from second order neurons. 
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Also located in the olfactory bulb are intemeiirons called granule cells, which are em­

ployed in releasing a neurotransmitter to inhibit secondary olfactory neurons for adaptation. 

The olfactory information carried by the olfactory tracts into the brain terminates at the olfac­

tory cortex in the frontal lobe of the brain for final processing. 

2.3 Olfactory Physiology 

Essentially, olfaction is a solubility process, where the odorant is the solute and the mu­

cus covering the olfactory epithelium is the solvent. Therefore, for olfaction to take place, the 

odorant must be in a gaseous state, which requires the original substance causing the odor to 

be a volatile compound. Volatile organic compounds used in this study are therefore all de­

tectable by the olfactory system. The odorant molecules must also be sufficiently water solu­

ble so that they can be dissolved in the nasal cavity [47]. The dissolved odorant then opens 

various sodium (Na^), and chloride (CI ) channels in the olfactory neuron by binding to odor­

ant binding proteins that are located in the cilia of the neuron. If there are enough odorant 

molecules, opening these channels causes an influx of positively charges Na^ and Ca"^^ ions 

along with an efflux of CI' ions, raising the membrane potential from its resting value and 

creating an adequate depolarization for generating an action potential. The action potential, is 

then transmitted to the olfactory bulb. 

2.3.1 Perireeeptor Events 

Due to the location of the olfactory receptors, the air entering the nasal cavity during 

breathing must make a hairpin turn in order to stimulate the receptors. Sniffing, which draws 

more air into the superior regions of the nasal cavity, is effective for smelling, since it in­

creases the concentration of the odorant molecules received at the sensory receptors. 



www.manaraa.com

15 

Processes that affect the entry, exit, and residence time of odorant molecules in the recep­

tor vicinity (the cilia of the olfactory neurons) are collectively known as perireceptor events. 

The most important of these events is the entry of the odorant molecules into the receptor and 

it is controlled by the odorant binding molecules. The odorant binding molecules serve a 

number of interrelated purposes. They [49, 52] 

• shuttle the odorant molecules towards the chemosensory cilia (odorant receptors), 

• initiate the signal transduction process, and 

• concentrate the odorant molecule to facilitate their interaction with the cilia. 

It is believed that the binding process greatly improves the sensitivity of the olfactory 

system. This is because, humans are able to sense certain molecules at a concentration of a 

few parts per trillion, though the individual olfactory receptor neurons can only detect con­

centrations that are at least 1000 times larger than this amount [49]. As an example, humans 

can detect 1/25 trillionth of a gram of methylmercaptan, which has a nauseating odor similar 

to that of rotten cabbage [51]. Therefore, it is usually added at a concentration of 1 part per 

million to natural gas, an odorless but dangerous gas. Figure 2.2 illustrates the perireceptor 

events [52]. 

2.3.2 Odorant Receptors and Olfactory Signal Transduction 

Odorant receptors are proteins found in the cilia of the olfactory receptor neurons. They 

are members of a superfamily of receptor proteins called G-protein-coupled receptor super-

family. The specific G-protein that is coupled to odorant receptors is known as Golf (G pro­

tein in olfactory receptor). 
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Figure 2.2 Perireceptor events 

The odorant binding protein shuttles the odorant molecule to the odorant receptor, and 

binding of the odorant/odorant binding protein complex to the receptor activates Golf, which 

in turn leads to the activation of adenylyl cyclase. Adenylyl cyclase is an enzyme that can 

convert adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). 

ATP is an organic molecule that stores and releases chemical energy for use in body 

cells, whereas cAMP is an important intracellular second messenger which regulates a vari­

ety of cellular effects. In olfactory neurons, cAMP opens Na^ and CI' channels, which results 

in an influx of positively charged Na* and Ca^ atoms. The membrane potential starts rising 

from its resting value of -70mV towards the threshold level, the required voltage for an ac­
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tion potential to be fired. In the meantime, the efflux of negatively charged CI' atoms further 

elevates the membrane potential. 

In the presence of adequate amount of odorant molecules, the action potential threshold is 

exceeded and the action potential is fired, carrying the odorant information to the brain. This 

entire chain of events is known as the olfactory signal transduction. 

Figure 2.3 illustrates molecular configuration of the olfactory epithelium in the absence 

of an odorant. Note that all ion channels are closed, and the membrane potential is around 

-70mV. 
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Figure 2.3 Olfactory membrane in the absence of an odorant 
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Figure 2.4 illustrates the chain of events when an odorant binds to the receptor. Note that 

Golf activates adenylyl cyclase, which converts ATP to cAMP, causing the ion channels to 

open. This leads to influx of Na^ and Ca^ ions and an efflux of CI" ions, which imniediately 

causes depolarization. 

It should be noted that all these events are actually taking place at the cilia of the primary 

olfactory neurons. Depolarization of the cilia and fu'ing of APs then spread to the entire cell 

body and to the axon of the neuron. 
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Figure 2.4 Olfactory signal transduction in the presence of an odorant molecule 
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2.4 Olfactory Pathways 

Action potentials generated at the cilia of the primary olfactory neurons propagate to­

wards the axon of the neuron and from there towards the secondary olfactory neurons, which 

are located in the olfactory bulb. Both types of secondary neurons, mitral and tufted cells, 

make synapses within the glomeruli to receive the olfactory information from the primary 

neurons. They also make synapses with granule cells, which are intemeurons between affer­

ent (towards the brain) and efferent (from the brain) pathways. 

Granule cells complete a long inhibitory feedback loop between the glomeruli and the ol­

factory cortex of the brain where the olfactory information is processed. The inhibitory na­

ture of this loop is due to a neurotransmitter called gamma aminobutyric acid (GABA) that is 

released by the granule cells to inhibit mitral and tufted cells, which are employed in relaying 

the signal from the primary neurons to the olfactory tract. Inhibition of these cells effectively 

shuts down the afferent signals from the receptors to the brain. Thus, granule cells, receiving 

information both from the second order neurons and from the brain modify the olfactory in­

formation in the olfactory bulb, before it even reaches the brain [51]. This inhibitory feed­

back loop is associated with the olfactory adaptation, which desensitizes the primary neurons 

to a specific odorant that is continuously being drawn into the nasal cavity. 

If not inhibited, mitral and tufted cells send the olfactory information to the olfactory cor­

tex, which is divided into three areas: the lateral olfactory area, the medial olfactory area, 

and the intermediate olfactory area. Most of the olfactory tract axons terminate in the lateral 

olfactory area, located at the inferior and medial surface of the frontal lobe of the brain, and 

therefore the lateral area is considered the primary olfactory area. The lateral olfactory area is 

responsible for the conscious perception of smell, and the pathway to this region of the brain 
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has the unique property among all other sensory pathways that it does not make a synaptic 

relay in the thalamus before reaching the cortical areas. Connections to other cortical regions 

such as the amygdala and adjacent structures of the limbic system provide visceral and emo­

tional reactions to odors. For example, the nausea due to smelling of a rotten egg, remember­

ing past events and memories upon smelling familiar odors, sexual excitement felt due to 

specific periume are all examples of odor-evoked responses related to this pathway. 

Olfactory pathways to the medial olfactory area are considered secondary olfactory 

pathways, and these pathways do make a synaptic relay at the thalamus before reaching the 

orbitofrontal cortex of the brain. It has been suggested that this secondary (and smaller) 

pathway may actually have a more direct involvement in the conscious perception of odors 

then the primary olfactory pathway, and that the primary olfactory pathway is more involved 

in odor evoked memory and recollection of past events [49]. 

The intermediate olfactory area is involved in providing the feedback information to the 

granule cells for the modulation of the olfactory information. [51]. 

More recently, an additional olfactory pathway has been reported where the olfactory 

tracts project to the hypothalamus through the accessory olfactory bulb. It appears that the 

receptors that send information through this route are located in a small pit, called the vo­

meronasal organ (VNO) inside the nasal septum. VNO has been known to exist in lower 

mammals, particularly in rodents. In humans, however, it was thought that only infants had a 

VNO, and that it was later lost. Recently, it has been reported that adults do actually have a 

VNO, albeit not well developed. Much like it does in rodents, VNO provides important ol­

factory information about nonvolatile odors, such as pheromones, which are odorant sub­
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stances produced by aninuUs to attract, threaten, or cause other physiologic and/or behavioral 

changes in other animals [49, 50, 54]. 

2.5 Sensitivity and Selectivity of Oifactory Receptors 

Humans, who are not trained to recognize specific odors can generally identify 10000 dif­

ferent odors, whereas those who are trained, such as wine testers or perfumers can identify an 

order of magnitude more odors [49]. Therefore, the di.scrimination of the olfactory system is 

quite remarkable. However, it is generally believed that these 10000 different odors are a 

combination of a much smaller number of primary odors, and that the olfactory receptors can 

actually respond to a very small number of primary odors. The number and identity of these 

primary odors, however, is an issue of much debate. In fact, researchers have been divided 

into two main camps: the first group of researchers argues that there are only seven primary 

odors: floral, musky, camphorous, pepperminty, ethereal, pungent (stinging), and putrid (rot­

ten). The second group of researchers argues that humans can actually respond to more than 

fifty distinct families of odors. More recently, it has been suggested that there are actually 

over 1000 smell genes in the olfactory neurons, each of which encodes a unique receptor pro­

tein. Each receptor protein can respond to several distinct odors, and similarly, each odor can 

bind to several different types of receptors [47]. Considering that there are roughly 80(X)0 to 

100000 genes in the human body, about 1% of the human genome is used for olfaction [50]. 

It is also believed that there is only one type of receptor in each olfactory neuron, and 

each neuron activates one or two glomeruli, justifying the 1800 glomeruli for 1000 receptors 

found in the olfactory epithelium. It therefore appears that individual glomeruli are tuned to 

specific molecular features or odorants. Therefore, recognizing over lOOOO odors requires 



www.manaraa.com

22 

that odorants stimulate more than one type of receptor at varying degrees and the identifica­

tion of the odorant is actually done by the brain based on the patterns of glomeruli that have 

been activated [55]. 

As mentioned earlier, humans can also detect certain substances at levels of a few parts 

per trillion, indicating that the sensitivity of the olfactory system is also quite impressive. The 

sensitivity levels of the receptors vary for different molecules. For example, the human olfac­

tory system can detect 5.83 mg/L of ethyl ether, 3.30 mg/L of chloroform, and 0.0000004 

mg/L of methyl mercaptan. However, the same cannot be said for discriminating the differ­

ence in the concentrations of odors. For example, for the slightest detection of a concentra­

tion change, there must be an at least 30% difference in the concentration levels. This is quite 

different from the visual discrimination, where a change of 1% in the light intensity can be 

detected by the human eye [50]. 

2.6 Towards The Electronic Nose 

As summarized in the first chapter, a system that can mimic the mammalian olfactory 

system by accurately identilying and quantifying odorant molecules has paramount benefits 

to a wide variety of industries. Traditionally, human experts and dogs have been used in 

identifying odors; however, training human experts and dogs is very time consuming and 

costly. Furthermore, they can be subjective, they cannot be used for quantifying the odor, and 

they certainly cannot be used for identifying hazardous odors. Gas chromatographs and mass 

spectrometers are also commonly used for identification. These devices are very accurate; 

however, they are extremely expensive, time consuming, and bulky. Therefore, they cannot 

be used in real time or in a field setting. Consequently, a faster, cheaper, and portable solu­
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tion is of great value. The overwhelming potential benefits of such a system have sparked 

great interest in medical, chemical and engineering researchers around the world. Various 

technologies have been developed over the last two decades in an attempt to design a fast, 

cost-effective, field deployable and accurate electronic nose system. A typical electronic nose 

system generally includes an array of sensors appropriately chosen for the particular applica­

tion, a signal processing module, a knowledge base module, a feature extraction module, a 

pattern classification module and necessary signal/gas transmission media. Figure 2.5 illus­

trates the schematic of a typical electronic nose system, where the sensors coated with a 

chemically interactive material (CIM) are used as transducers to convert the chemical infor­

mation to electrical signals. A sensor processor, such as a frequency counter or a network 

analyzer, is then used to acquire and measure the electrical signal, followed by a signal proc­

essing algorithm to denoise the signals and increase the signal to noise ratio. A feature 

extraction module then extracts the relevant features from the signal and feeds them to the 

pattern recognition algorithm, which is pretrained with signals from a knowledge base. 

One can think of the following analogy between the human olfactory system and an elec­

tronic nose system. The sensors are analogous to the receptor cells. Much like the human ol­

factory system employs a large number of receptors, an electronic nose system uses an array 

of sensors. The sensors are coated with different CIMs so that they can respond to different 

compounds with varying sensitivity and selectivity. Therefore, the coating material can be 

thought of as the receptor binding proteins. The signal processing and feature extraction 

modules of a gas sensing system can be compared to the glomeruli of the olfactory system. 

Finally, the ultimate identification in a gas sensing system is done by a neural network ac­

cording to output of the signal processing and/or feature extraction module which process the 
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signature patterns of the various compounds, whereas in the olfactory system the final identi­

fication of an odor is carried out by the brain, based on the olfactory information relayed 

from the glomeruli. 

People developing electronic nose systems usually concentrate their efforts on two of the 

six blocks shown in Figure 2.5: selection of an appropriate sensor, and an appropriate pattern 

recognition and classification algorithm. 
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Figure 2.5 Block diagram of a typical electronic nose system 

2.6.1 Sensor Technologies for Electronic Noses 

Important design issues must be considered in selecting an appropriate sensor technology 

to use in an electronic nose system. These issues include sensitivity and selectivity, speed of 

response, cost, size, ability to operate in diverse environments, repeatability, and the ability 

to clean itself in the absence of odorants, which requires that the sensor should somehow be 
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flushed of all chemicals after the odorant is identified. There are quite a few sensor technolo­

gies available today that satisfy these requirements. Currently available sensor technologies 

include metal-oxide semiconductors, conductive polymers, conducting oligomers, non­

conducting polymers with embedded conductors, surface acoustic wave devices, bulk acous­

tic wave devices, quartz crystal microbalances, chemical field effect transistors, fiber optic 

sensors, and discotic liquid crystal sensors [56]. Among these, metal-oxide semiconductors, 

conducting polymers, surface acoustic wave devices and quartz crystal microbalances have 

enjoyed more attention than the others. 

Metal-oxide (MeOJ semiconductor gas sensors are based on adsorption of odorant 

molecules by a metal oxide layer on a semiconductor, followed by subsequent surface inter­

actions which modulate the conductivity of the semiconductor. Silicon dioxide is typically 

the semiconductor of choice in MeOx sensors. MeO^ sensors are widely used because they 

are inexpensive and robust, and they are particularly effective in detecting combustible and 

hazardous gases. However, they require elevated operating temperatures between 100°C and 

600°C. The reproducibility and response time of these devices have recently been improved 

along with the thin film deposition techniques, whereas sensitivity and selectivity have been 

enhanced by the addition of catalyst substances (such as palladium) and precise control of 

operating temperature [57]. 

Conducting polymer sensors are based on the conductivity changes that take place in 

the organic semiconductor polymeric materials when they are exposed to volatile chemicals. 

Conducting polymers have unique adsorptive surfaces that interact with adsorbed volatile 

chemicals, depending on their shape and size. The change in conductivity depends on the 

stereochemical parameters of the odorant molecule and the corresponding interaction be­
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tween the odorant and the polymer, which causes the polymer to swell. Conducting polymers 

have fast response, can be easily flushed and they are able to operate at ambient tempera­

tures; however they are very sensitive to humidity [58]. 

Chemical field effect transistors (ChemFET) sensors consist of a field elTect transistor 

whose gate is coated with a selective coating, typically a polymer. In the presence of an 

odorant molecule, the coating swells, causing a change in the conductivity of the gate elec­

trode. These sensors have high sensitivity and selectivity, however, having the odorant mole­

cules penetrate the transistor gate constitutes a major difficulty for this sensor [56]. 

Fiber optic sensors (FOS) employ an optical fiber, which is also coated with a selective 

coating, typically a fluorescent material. When exposed to odorant molecules, the coating 

material swells and changes its optical properties, which causes a shift in the frequency of the 

optical signal transmitted through the fiber [56]. 

Surface acoustic wave (SAW) sensors and quartz crystal microbalances (QCM) are 

both piezoelectric devices, whose operation principle is based on a frequency shift in re­

sponse to an added mass on their surface. These devices are generally coated with polymeric 

materials chosen according to the chemical properties of the gas to be detected. SAW devices 

consist of input and output transducers which are deposited on the surface of a piezoelectric 

material, as shown in Figure 2.6. Between the transducers is a substrate covered by a chemi­

cally interactive material (typically a polymer), along which the surface acoustic wave that is 

generated by the input transducer travel towards the output transducer. 
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Figure 2.6 Surface acoustic wave transducer 

When the odorant material is deposited on the polymer coated surface of the SAW de­

vice, the phase velocity as well as the propagation loss of the acoustic wave is altered accord­

ing to the mass of the deposited amount, and the chemical interaction between the odorant 

molecule and the polymeric material. In particular, phase velocity can be converted into a 

frequency shift, which can then be detected as the response of the device to the odorant 

molecule. 

Quartz crystal microbalances (QCMs) work on a similar principle, except the fre­

quency shift that is recorded is the change in the resonant ft-equency of the piezoelectric crys­

tal when it is exposed to a particular odorant molecule. QCMs, which were used in this study, 

are described in detail in Chapter 3. 

Both piezoelectric type devices are commonly used in gas sensing because they have 

good sensitivity (down to O.l ppm), they can operate at near room temperatures (10°C to 

60°C), their selectivity can be controlled by the polymer coating selected according to the 

odorants that need to be detected, they are inexpensive, easy to prepare and easy to use. 

These devices are particularly useful in detecting volatile organic compounds. 
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More recently, hybrid systems that utilize more than one of the above listed technologies 

started to emerge. One such system is MOSES, the "MOdular SEnsov System for Gas Sens­

ing and Odor Monitoring"[59]. MOSES combines QCM sensors, SAW devices, and metal 

oxide sensors, with other modules being under development. 

As described above, all sensor technologies involve a selective coating material to be cast 

on the sensor surface to bind the odorant of interest, and polymers have been the coating of 

choice for most of them. Despite its preferred conductivity and solubility characteristics (see 

Chapter 3 for solubility parameters of polymers), polymers are not nearly as selective and/or 

sensitive as the olfactory receptors in the mammalian olfactory system. Noting that olfactory 

receptors are simply made of proteins, and that such proteins can be easily extracted from 

various animals, the natural experiment to try is to use such proteins as coating material. As 

simple and straightforward as it might seem, this idea was not implemented until Wu used 

the olfactory receptor proteins (ORPs) of bullfrogs as coating material on QCMs for the de­

tection of various volatile organic compounds [60]. He showed that ORPs produce rapid, re­

versible, long term and stable responses with sensitivity levels close to that of humans. More 

information on currently available gas sensors can be found in [61]. 

2.6.2 Classification Algorithms for Electronic Noses 

The second issue of consideration in the design of an electronic nose is the pattern recog­

nition and classification algorithm. No algorithm can approach to the computational power of 

the brain which can identify over 10000 odors. However, such computational power is typi­

cally not necessary for a practical electronic nose application. Usually, a small number of 

odorants are of particular interest for a typical application, and as described in Chapter 1, a 
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variety of pattern recognition algorithms have been successfully used in the past. Such algo­

rithms include, but are not limited to, artificial neural networks (ANN), principle component 

analysis (PCA), cluster analysis (CA), fuzzy logic based algorithms such as fuzzy ARTMAP 

(FL), discriminant analysis (DA), statistical pattern recognition (SPR), etc. Among these, 

ANNs and PCA have proven more useful than others. 

2.6.3 Commercially Available Electronic Nose Systems 

A number of electronic nose systems have been made commercially available within the 

last decade. Table 2.1 lists some of the more popular commercially available systems (as of 

March 2000), the sensor technology and the pattern recognition algorithms they employ, and 

the country of origin for their manufacturers. A more detailed description of these products 

can be obtained from NOSE (iVetwork on artificial Olfactory 5Ensing ) web page 

http://nose.uia.ac.be/review/). The following additional acronyms are used in the table: 

MS: Mass spectrometry, GC: gas chromatography, ND/PR: not disclosed or proprietary, 

N/A: not applicable, ?: unknown . 

Design and development of electronic nose systems is still in its infancy. However, this is 

an area of active research and progress is constantly being made. Surveys on current research 

and updates in this area are now available in various electronics and signal processing maga­

zines [62], applied science review magazines [63], as well as in reference handbooks cover­

ing a wide area of topics in gas sensing [64]. 

http://nose.uia.ac.be/review/
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Table 2.1 Commercially available electronic nose systems' 

Airsense 
Analysis GmbH 

MOS 10 ANN, DC, PCA 
20.000-
43,000 

Germany 

FoxxOOO 
AlphaMOS 

QCM, SAW, 
CP. MOS 

6-24 ANN. DFA. PCA 
20,000-
100,000 

France 

AromaScan 
OsmeTech Inc. 

CP 32 ANN.FL 
20,000-
75,000 

U.K. 

BH114 
Bloodhound Sensors Inc. 

CP 14 
ANN. CA. DA. 

PCA 
7 U.K. 

Cyranose 320 
Cyrano Sciences Ltd. 

CP 32 PCA 5,000 USA 

Enose 5000 
Marconi Ltd. 

QCM, MOS, 
CP. SAW 

8-28 ANN, DA, PCA •) U.K. 

Znose 
Electronic Sensor Tech. 

SAW, GC 1 SPR 
19,500-
25,000 

USA 

QMB6-HS40XL 
HKR / Sensorsysteme 

GmbH 
QCM 6 ANN. PCA > Germany 

MOSES II 
Lennartz Electronik GmbH 

QCM. MOS 16 ANN. PCA • }  Germany 

NST3210 
Nordic Sensor Technologies 

MOS. FET, 
QCM 

22 ANN. PCA 
40,000-
60.000 

Sweden 

OligoSense 
OligoSense 

CP ND/PR ND/PR 7 Belgium 

SAM 
Daimler RST Rostock 

QCM. SAW, 
MOS 

6-10 />lNN.PCA 50.000 Germany 

SMart Nose 300 
SMart Nose 

MS N/A DFA. PCA •> Switzerland 

VOCmeter 
MoTech Sensorik. GmbH 

QCM, MOS 8 ANN. PCA 7 Germany 

FreshSense 
Element Ltd. 

MOS ND/PR ND/PR 7 Iceland 

44408 
HP - Agilent Technologies 

MS N/A 
Various 

Chemometrics 
79,900 USA 

VaporLab 
Sawtek Inc. 

SAW 2 ND/PR 5,000 USA 

I. The priccs arc obtained from [62], whereas (he rest of the information is compiled from the NOSE web 

site at http://no.sc.uia.ac.hc/rcvicw. and the respective web sites of the manufacturers. 

http://no.sc.uia.ac.hc/rcvicw
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CHAPTER 3 

GAS SENSING USING POLYMER COATED PIEZOELECTRIC DEVICES 

AND THE VOC DATABASE 

3.1 Introduction and Overview 

In 1880, French scientists Pierre Curie and his brother Jacques Curie observed the strange 

phenomenon that pressure exerted on surfaces of a quartz material generated an electric po­

tential across the surfaces of the crystal. Equally interesting was the converse of this phe­

nomenon, where an electric field applied to two surfaces of a quartz crystal caused deforma­

tions on these surfaces. They named this phenomenon as the piezoelectric effect, where the 

word was derived from the Greek word TCiel^o (piezo) which means to press or exert pres­

sure. The ability of piezoelectric materials to convert mechanical deformations and vibrations 

into electrical potentials, and conversely, convert voltage into mechanical motions, allowed 

them to be used in a wide variety of applications such as mechanical to electrical (and vice 

versa) transducers. In particular, they have been widely used in oscillator circuits, high fre­

quency ampliflers and microphones. The first reported use of piezoelectric materials as 

acoustic transducers in ultrasonic applications was in 1917 [61]. 

In late 19S0s and early 1960s, King showed that quartz piezoelectric crystal coated with 

an appropriate coating material could be used as a microbalance to detect gases or liquids 

accumulated on the surface of the coating. Hence, quartz crystal microbalances (QCMs) were 

bom as sorption detectors [65]. Around the same time, Sauerbrey provided the theoretical 

foundation of the piezoelectric sorption detector by formulating the expression of the shift in 
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resonance frequency of the piezoelectric crystal in response to a mechanical mass deposited 

on its surface [66]. The Sauerbrey equation for QCMs, which describes the frequency 

change, A/, caused by a deposited mass Am is given as 

^  =  4 7 / —  ( 3 . 1 ,  
pN A 

where p is the quartz density, N is a crystal related constant,/is the fundamental resonant 

frequency of the uncoated crystal, A is the active surface area. This equation is often ap­

proximated as [67]. 

4/" = -2.3x10^ •/- •— (3.2) 
A 

for QCMs. 

From 1970s to 1990s, the technology for manufacturing and using piezoelectric crystals 

for gas sensing applications has progressed at an exponential rate. Today a variety of highly 

sophisticated piezoelectric sensor devices are commercially available, and piezoelectric 

acoustic wave sensors now comprise a versatile class of chemical sensors for various gas 

sensing applications. 

The particular application that is discussed in this dissertation is the detection of volatile 

organic compounds (VCXTs), which are organic compounds that can readily evaporate at 

room temperature and pressure. VOCs used in this study were originally in liquid phase (ana-

lyte) from which vapors of VOCs were obtained. Therefore, the terms VOC, analyte and va­

por are used interchangeably in the following discussion. 

For sensing applications, a coating film is cast on the surface of the QCM. This layer can 

bind a VOC of interest, altering the resonant frequency of the device, ideally, in proportion 
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to the added mass. The chemical sensor typically constitutes of an array of several crystals, 

each coated with a different coating. Through monitoring the response pattern of an array of 

coatings, this design is aimed at improving identification, which is hampered by the limited 

selectivity and varying sensitivity of individual sensors. The response pattern then serves as a 

signature for a given VOC. 

3.2 The Quartz Crystal Microbalance 

Quartz crystal microbalances (QCMs) constitute a subgroup of acoustic wave devices 

known as thickness-shear mode (TSM) devices. Acoustic devices consist of a piezoelectric 

material with one or more metal transducers on their surfaces. Acoustic waves at ultrasonic 

frequencies are launched into the material from these transducers serving as electrodes. The 

acoustic waves launched into the material have particles which move normally (perpendicu­

lar) to the direction of wave propagation, and hence they are called transverse waves or shear 

waves. 

For gas sensing applications, the surface of the crystal is first coated with gold, which 

serves as the metal transducer, to obtain electrical contacts (electrodes). The device is then 

coated with a material that is sensitive to the analyte to be detected as illustrated in Figure 

3.1. The interaction of the coating material with the analyte perturbs various parameters of 

the acoustic wave such as the wave velocity and the resonant frequency. The amount of per­

turbation on the shear wave depends on the thickness of the coating (among other things as 

described later in this chapter), from which the name "thickness shear mode" devices was 

derived. 
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In one type of QCM, the bare crystal is about 1 cm in diameter and resonates at approxi­

mately 9 MHz, whereas another type of QCM is approximately 25 mm in diameter and reso­

nates at 25 MHz. The coating material is typically a polymer film to bind the molecules of 

the VOC of interest. The VOC in vapor form (the solute) is then solved in the coating mate­

rial (the solvent/sorbent). The interaction between the coating and the VOC results in 

1. mass accumulation on the piezoelectric crystal 

2. swelling of the coating and changes in the shear modulus (a measure of stiffness) of 

the coating [68. 69] 

both of which alter the resonant frequency of the device. The exact interaction between the 

analyte and the coating depends on the viscoelastic properties of the coating material, and the 

solubility parameters. 

Viscoelastic properties of the coating material include thermal expansion and film reso­

nance effects. These properties are measured by the shear modulus, which is a measure of 

material stiffness. For example, an increase in the temperature causes the polymer to swell, 

which in turn causes the material to soften and hence reduce its shear modulus. This effect is 

known as thermal expansion and can cause significant shift (decrease) in the resonant fre­

quency of the acoustic device. Continually increasing the temperature, however, causes a 

sudden increase in the device resonant frequency, and this effect is known as the fihn reso­

nance effect. Film resonance effect is due to lower surface of the film adhering to the crystal 

more strongly than the upper surface of the film, particularly at high temperatures. At the 

lower surface, the polymer moves synchronously with the crystal, whereas at the upper sur­

face the polymer movement lags behind. When the phase lag due to this nonsyncronous mo­

tion on the upper and lower surfaces of the coating reaches ninety degrees, film resonance is 
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said to occur, responsible for the sudden increase in the device resonance frequency [69]. 

Film resonance effects are particularly prominent in thicker coatings. 

The solubility parameters play an even more substantial role in the coating - analyte in­

teractions and therefore they are discussed in detail in the next section. 

In designing gas sensors, the aim is to choose coating materials such that the sensitivity 

and selectivity of the sensors are maximized for the analytes of interest. Both viscoelastic 

properties and solubility parameters of a coating must be considered for intelligent selection 

of coatings to ensure improved sensitivity and selectivity. The issues that need to be consid­

ered in coating selection are discussed in the next section, where an introductory review of 

solubility interactions between the analyte and the coating material is also included. This re­

view is compiled primarily from [44,45,46, 68, 69. 70, 71, 72, 73, 74,75]. [)etailed 

information on QCM sensors, including design issues, circuit equivalents, sensitivity 

analyses in various media, can be found in [68, 69, 72,76, 77, 78]. 

Electrode on back-

^ Bare piezoelectric crystal 

Central part of the 
^ crystal coated with 

first gold, and then 
polymer material 

Electrode on front 

Crystal holder 

Figure 3.1 Schematic diagram of a QCM 
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3.3 Coating Selection Considerations 

3.3.1 Sensitivity and Selectivity 

Two major issues in chemical detectors are sensitivity and selectivity. Sensitivity, S, re­

fers to the device being able to detect analytes at low (trace) concentrations, and it is defined 

as the incremental signal change occurring in response to an incremental change in anaiyte 

concentration. The signal measured is typically the change in resonant frequency A/, and 

therefore, the sensitivity can be defined as 

S = ^  ( 3 . 3 )  
^p 

where Ap is the change in the concentration of the anaiyte. Sensitivity is given in Hz/ppm 

(parts per million). Sensitivity is directly proportional to the coating thickness, as thicker 

coatings respond with larger frequency shifts. 

Selectivity refers to the ability of the device to selectively detect the anaiyte of interest in 

the presence of other materials, and/or the ability to give a significantly different response to 

different vapors, so that they can all be identified. 

The sensitivity and selectivity of each sensor to a panicular anaiyte can be controlled by 

strategically selecting the coating material with specific chemical and physical properties 

such that certain solubility interactions between the coating and the anaiyte are maximized. 

Sensitivity and selectivity of a coating increases with the strength of the solubility interac­

tions that take place between the coating and the vapor. A number of physical parameters as 

well as chemical properties of the coatings play a central role in determining the sensitivity 

and selectivity of a coating. 
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3.3.2 Physical Parameters Affecting Sensor Response 

Physical parameters that must be taken into consideration can be summarized as follows. 

It should be noted that these properties are interrelated with the viscoelastic properties of the 

coating material. 

/. Thickness of the coating: Increasing the coating thickness increases the amount of 

vapor that can be collected at the surface, and hence increases sensitivity. However, 

thicker coatings also increase the resistance of the coating, and causes film resonance 

due to phase lag (described in Section 3.2), which in turn results in attenuation of the 

surface energy on the device and consequently very slow response times. 

2. Softness / Stiffness of the coating: In general soft coatings have better response 

times, and usually result in reversible processes. However, they are also lossy, and 

cause attenuation in the oscillator circuits used, preventing the measurement of the 

resonant frequency. Therefore, soft coatings cannot be made very thick. On the other 

hand, stiff coatings are not lossy; and therefore, they can be made thicker. However, 

they have slow response and irreversibility problems. 

3. Reversibility: Reversibility assures that the device can be repeatedly flushed of the 

analyte and exposed back to the same or a different analyte or concentration. Typi­

cally, weak interactions between the analyte and the coating material allow good re­

versibility, but in return, they hamper the sensitivity and selectivity. Strong interac­

tions improve sensitivity and selectivity, but may cause irreversibility, or very slow 

reversibility. 

4. Operation temperature: One of the nnajor parameters of polymeric coating materials 

is their glass transition temperature, a temperature at which they transform from an 
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amorphous and elastomeric state to a glassy and crystalline state. Above their glass 

transition temperature (Tg), these materials become softer and provide t^ter re­

sponses. Therefore, if operating temperature is, for example, room temperature, then 

coatings with Tg values less than 25°C should be chosen. On the other hand, it should 

be noted that as temperature increases, sorption decreases, and hence sensitivity and 

selectivity decrease. 

3.3.3 Intermolecular Interactions Affecting Solubility 

Sensitivity and selectivity depends on the strength of the sorption, which depends on the 

strength of the solubility interaction, which in turn depends on the solubility properties of the 

solute and the solvent. Likes like likes is the general rule of thumb in solubility, where the 

objective is to maximize specific interactions between the analyte (solute) and the coating 

(solvent/sorbent). The specific solubility interactions relevant to chemical .sensing are the fol­

lowing intermolecular vapor-coating interactions [44,46]: 

/. Induced dipole / induced dipole (dispersion interaction): Also known as London 

forces, these are the interactions between primarily nonpolar molecules, and they con­

tribute significantly to the sorption of all vapors by organic polymers. They occur due 

to movements of unevenly distributed electrons causing instantaneous / momentary 

dipoles. 

2. Dipole / induced dipole (dipole induction): These are the interactions of uncharged, 

nondipolar, but polarizable (when exposed to an electric field) molecules with di­

poles. The strength of dipole induction depends on the polarizability of the nonpolar 

molecule, but they are generally weak. 
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3. Dipole / dipole (dipole orientation): These are electrostatic interactions which in­

volve the attraction between the positively and negatively charged regions of dipolar 

molecules. These interactions can be very dominant when strongly dipolar molecules 

interact, and they can be even stronger for certain orientations of the dipoles. 

4. Hydrogen bonding: These interactions are special cases of very strong dipole - di­

pole interactions and occur typically between a hydrogen atom and a small but highly 

electronegative element, such as fluorine, oxygen or nitrogen. They are important in 

many chemical and biochemical processes, and they involve the directional interac­

tion between a hydrogen-bond acidic site and a hydrogen-bond basic site. 

The first two of these interactions are non-oriented and the last two are oriented interac­

tions. The first three are also known as Van der Waals interactions, although some chemists 

use this term specifically for dispersion interactions. A quantitative measure of vapor mole­

cules to participate in these interactions can be obtained through various models using solu­

bility parameters. These parameters measure the solubility properties of the vapor. 

3.3.4 Linear Solvation Energy Relationships and Solvation Parameters 

To quantify the total absorption, the partition coefficient, K, is defined as the ratio of the 

solute concentration in the sorbent, C;, to the solute concentration in vapor, C, that is 

K=CJC, (3.4) 

The partition coefficient is a thermodynamic parameter which measures the equilibrium 

distribution of the solute molecules between the vapor phase and solvent phase. This is illus­

trated in Figure 3.2. 
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Sorbenti 
with sorli 

Figure 3.2 Absorption of a vapor from the gas phase into the sorbent phase (From [46]) 

The partition coefficient is useful when applied to piezoelectric detectors because it pro­

vides a direct relationship to the frequency shift caused by the mass loading effects of the 

sorption of the vapor. For example, for surface acoustic wave sensors. 

where Afs is the frequency shift caused by the application of the coating material to the bare 

crystal, AJv is the frequency shift caused by vapor sorption, p is the density of the coating and 

K is the partition coefficient. It should be noted that Equation 3.5 is an empirical expression. 

In general, the amount of solute that can be absorbed is large if the K value is large. There­

fore, higher partition coefficients lead to better sensitivity of the coating. 

Various models have been proposed that relate the partition coefficient to various solubil­

ity properties of the solutes. Simple models such as the boiling point model that relates K to 

vapor's boiling point, or the Hildebrand solubility parameter method have proven to be of 

limited use, but they have been far from optimized [45]. A more sophisticated model, called 

the linear solvation free energy relationship (LSER), has been shown to be the most accurate 

model of the relationship between K and solubility properties of the solute [45]. In this 

model, the partition coefficient is defined empirically in terms of the above listed solubility 

interactions. A number of parameters that characterize the solubility properties of solutes 

A/-,=A/,c,/r/p (3.5) 
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have been devised in an attempt to measure the abilities of solute molecules to participate in 

the above listed interactions. These parameters are collectively referred to as solvation 

parameters: 

a": Vapor hydrogen bond donation term, measures the hydrogen bond acidity. 

p": Vapor hydrogen bond acceptance term, measures the hydrogen bond basicity. 

R: Polarizability term measuring the ability of a solute to interact with the solvent 

through n and ;r electron pairs. 

7c": Vapor dipolarity-polarizability term, measuring the ability of a molecule to 

stabilize a neighboring charge or dipole. 

L'^: Ostwald solubility coefficient, provides a measure of cavity formation and 

dispersion interactions (it is the partition coefficient of the solute in hexadecane 

at 25"C). 

The LSER used for sorption processes has the form 

log = c + r/?2 + +/logZ,'^ (3.6) 

where the indices 2 denote that these parameters refer to the solute, the parameters r, s, a, b 

and / characterize the complementary properties of the coating material, and c is a regres­

sion constant. The complementary parameters, along with solvation parameters, measure the 

strengths of various interactions in affecting the solubility in a given solvent. In practical 

terms, a large s value corresponds to strong sorbent dipolarity, whereas a large a value corre­

sponds to increased ability of the sorbent to accept hydrogen bonds from hydrogen bond do­

nating groups of the vapor. Similarly, a large b value corresponds to increased ability of sor-
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bent to donate hydrogen bonds to hydrogen bond accepting groups in the vapor. The parame­

ter r measures the ability of the sorbent to interact with the solute's n and ;r electrons. 

When combined with solvation parameters, 5^2" is the polarity term, r/?2 is the polariza-

bility term, is the hydrogen bonding term where the solute is a hydrogen-bond acid, 

is the hydrogen bonding term, where the solute is a hydrogen-bond base, and I \ogL'^ is 

the combined dispersion interaction and cavity term. 

It is worth noting that not all terms in the LSER equation are important for all cases. In 

some cases, certain terms can be eliminated if the corresponding interactions do not have 

substantial contributions to the overall solubility. For example, hydrogen-bond acidic sor-

bents are relatively uncommon, and therefore the can be omitted for all solvents that are 

not hydrogen bond acidic. 

As seen from the LSER equation, the chenucal properties of both the solute and of the 

solvent play significant roles in determining the solubility properties and, therefore, in deter­

mining selectivity and sensitivity. Therefore, solvation parameters of analytes of interest, 

along with the corresponding parameters of the coating must be considered before the coat­

ing selections are made. The following generalizations can be made regarding various groups 

of analytes. 

Alkanes are only capable of dispersion interactions, since they have zero values of ct, 

0*, R, and y, and nonzero values. All aliphatic alcohols (in which carbon atoms are 

linked through open chains) are moderate hydrogen bond acids and hydrogen bond bases, 

phenols are more acidic, whereas fluoroalcohols and fluorophenols are very strong hydrogen-

bond acids, since fluoro substitution reduces the basicity of alcohols. On the other hand. 
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ethers, ketones, esters, nitriles are all moderate bases, whereas amines, amides, sulfoxides, N-

oxides are strong bases. As mentioned above, most bases are dipolar, and in general, stronger 

bases have stronger dipolarity, except for amines. Aliphatic amines, have strong basicity, but 

little dipolarity. Conversely, nitriles are strongly dipolar though only moderately basic. 

Aromatic molecules, such as benzene, toluene and xylene all have lone pairs of n elec­

trons, resulting in strong polarizability. Chlorinated and brominated molecules, as well as 

aromatic molecules are strongly polarizable, due to significant R and ^ values. Fluorinated 

molecules, however, are not very polarizable [46]. 

LSER parameters for a variety of polymers can be found in [45,46, 70]. 

3.3.5 VOCs of Interest 

Twelve VOCs (analytes) of interest were chosen to represent a wide variety of functional 

groups. They constitute a wide diversity and span all major interactions. These VOCs and 

their properties whose chemical formulas are given in Appendix I, were as follows [44,46, 

71,75]: 

1. Acetonitrile (ACN): High dipolarity and basicity. 

2. Acetone (AC): Ketone, moderate base, dipolar. 

3. Methyethyketone (MEK): Ketone, nnoderate base, dipolar. 

4. Octane (OC): Alkane, nondipolar, only dispersion interaction. 

5. Hexane (HX): Alkane, nonpolar, only dispersion reaction. 

6. Ethanol (ET): Aliphatic alcohol, dipolar, hydrogen bonding, moderate acid/base. 

7. Methanol (ME): Aliphatic alcohol, dipolar, hydrogen bonding, moderate acid/base. 

8. Xylene (XL): Aromatic hydrocarbon, polarizable. 
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9. Toluene (TL): Aromatic hydrocarbon, polarizable. 

10. 1,1,1-Trichloroethane (TCA): Chlorinated alkane, polarizable. 

11. Trichloroethylene (TCE): Chlorinated, polarizable. 

12. 1,2-Dichloroethane (DCA): Chlorinated, polarizable. 

Solvation parameters of the above listed VOCs, as well as those for several thousand ana-

lytes, can be found in [79]. 

3.3.6 Designing the Coating IMaterial 

Recall that the objective is two folds: The first goal is to obtain the largest sensitivity pos­

sible to the target analyte. In order to achieve this goal, the coating material must be de­

signed to have properties complementary to those of the analyte, such that all possible inter­

actions between the coating and the vapor are maximized. Maximizing all possible interac­

tions also maximizes the partition coefficient according to Equation 3.6, which in turn maxi­

mizes the sensor response according to Equation 3.5. For example, a good coating for the 

sorption of a dipolar basic vapor would be a polymer that is also dipolar, but hydrogen bond 

acidic. The second goal is to obtain the best selectivity for a target analyte, which has con­

flicting requirements to those of obtaining best sensitivity. In particular, the attempt should 

be to design a coating that will maximize a single interaction that is favored by the target 

analyte and minimize all others. If an array of coatings is used, then there should be at least 

one coating for each solubility interaction, in addition to coatings that are specifically de­

signed to maximize the sensitivity to the target analytes. 

Unfortunately, it is practically impossible to find materials that will only have one type of 

interaction. In fact, all organic materials, for example, go through dispersion interactions, and 
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all basic materials are also dipolar and vice versa. The practical approach is to pick a solubil­

ity interaction, and incorporate this interaction through a suitable coating such that all other 

interactions are minimized. The procedure is repeated for all interactions. 

Other issues affecting coating selection are how fast the analyte is to be detected (re­

sponse time), at what concentration levels it is to be detected, and whether it is to be detected 

reversibly, all of which affect the chemical and physical properties of the coating to be se­

lected. Also of particular importance is whether other compounds exist in the environment, 

which could potentially generate strong signals from the sensors. If a potential interference 

with a specific compound is strongly suspected, then it is usually necessary to include a coat­

ing that is especially selective for the offending compound. If the interfering reaction is with 

the water vapor, hydrophobic coatings can be chosen that do not like water. 

Polymers are one group of materials that are especially suitable as sensor coatings due to 

their favorable physical and chemical properties. First of all polymers are non-volatile, which 

allow them to stay on the sensor once they are applied. They can be easily applied by a vari­

ety of methods such as spin coating, air brushing, adhesion, etc. Furthermore, the glass tran­

sition temperatures of most polymers are typically low enough to ensure that the sensors op­

erating at room temperatures are operating well above their glass transition temperatures. 

This property makes the polymers soft enough to provide rapid and reversible responses (at 

the expense of stronger attenuation of the acoustic wave energy). Another important property 

is that, as long as bond-making or bond-breaking interactions do not occur, polymer coated 

sensors are reversible. 
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3.3.7 Designing a Sensor Array 

As mentioned earlier, finding a single coating that will undergo only one kind of interac­

tion is not possible (for example, all polymers are capable of dispersion interactions), nor is it 

possible to find a coating that will strongly participate with all types of interactions. Further­

more, using a single sensor, it is not possible to tell whether a response is due to low concen­

tration of an analyte to which the coating is very sensitive, or due to high concentration of an 

analyte to which the coating is not very sensitive. The problem multiplies when there is more 

than one analyte to be detected, or when there are interfering vapors. All these scenarios are 

convincing evidence that an array of sensors should be used rather than a single sensor, for 

identification and quantification of analytes. The question is then how to select an array of 

coatings that will detect the desired analytes and not respond to undesired ones. 

If there are multiple analytes to be detected, the strategy is then to include coatings such 

that each coating will strongly interact with a single group of vapors, but not with others, 

effectively forcing each sensor to highlight one type of solubility interaction, or a 

combination of solubility interactions. In other words, the sensors should be chosen to 

maximize the diversity in the array response to various analytes. 

In this study a set of six sensors was used. They were coated with the coatings shown in 

Table 3.1. The polymers were applied using a variety of techniques, such as painting, air 

brushing, submerging, etc. based on the properties of polymer. These coatings were selected 

to maximize various solubility interactions. For example, APZ and PIB can easily undergo 

dispersion interactions with hexane and octane, but they do not interact much with ketones or 

alcohols. DEGA does not interact with alkanes, but it does interact with alcohols, probably 
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Table 3.1 Coatings used for this study 

Apiezott (grease, not a polymer) APZ 1.1 24 

Poly(isobutylene) PIB 2.7 60 

Poly(diethyleneglycoladipate) DEGA 0.6 14 

Sol-gel SG 1.1 24 

Poly(sUoxane) OV275 0.6 14 

Poly(diphenoxylphosphorazene) PDPP 2.2 49 

via dipole-dipole or hydrogen bonding interactions [70, 75]. Polarity and hydrogen bonding 

(basicity) are also important for OV275 and PDPP. 

Another important property of these coatings that were considered in the selection criteria 

was that they are all hydropohic (does not like water) material, eliminating the interfering 

interaction with water vapor. 

However, even the most carefully selected group of coatings may not be adequate to pro­

vide necessary discriminatory information, particularly when the analytes of interest include 

multiple gases from the same chemical family. For example, the response patterns of many 

polymers are very similar to ethanol and methanol, or to toluene and xylene. 

Figure 3.3 illustrates this problem. In Figure 3.3, normalized frequency shifts of QCMs 

with the six coatings to four different VCXTs are shown. The vertical axis is the frequency 

shift, and each bar in the horizontal axis represent the response of one polymer coating. Note 

that the response patterns to toluene and xylene are very similar, since both chemicals are 

aromatic hydrocarbons. Similarly, responses to both ethanol and methanol are also similar, 

since both of them are aliphatic alcohols. 
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Figure 3.3 Responses of six coatings to (a) toluene, (b) xylene, (c) ethanol, (d) methanol 

The limited information obtained from the sensors, the signature patterns of the analytes, 

can be most efficiently utilized by the use of a suitable pattern recognition technique. Pattern 

recognition techniques, such as neural networks, Bayesian classifiers. Fisher's linear dis­

criminant, principal component analysis, etc. can be very effective in recognizing a large 

number of diflerent response types, even when the differences in responses to different ana­

lytes may be unnoticeable to human perception. However, it should always be remembered 

that the performance of any pattern recognition technique is limited by the quality and the 

quantity of the information provided by the sensors. 
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To a pattern recognition algorithm, a response pattern provided by n sensors is simply a 

point in the n-dimensional space called the feature space. For example, in Figure 3.3, each 

set of six responses by the sensors for any given VOC is the signature pattern of that VCXT, 

and constitutes a point in six dimensional space. The individual response of each sensor then 

constitutes one feature of the response pattern. If responses of sensors to different analytes 

are similar to each other, then these responses will be interpreted as points which are very 

closely packed in the feature space, and hence it will be difficult to identify which point cor­

responds to which analyte. On the other extreme, if we could construct an array in which 

each coating would respond to one and only one analyte of interest, then the responses would 

fall on orthogonal axes on the n-dimensional feature space, and the identification of the ana­

lytes from their responses would be trivial. 

Intuitively, an array of sensors, coated with a set of polymers that accentuate a variety of 

combinations of solubility interactions will certainly provide better information to a pattern 

recognition scheme than a set of sensors in which all sensors undergo the same interaction. 

Therefore, a diverse set of coatings with strong, selective and uncorrected responses to dif­

ferent analytes will facilitate the classification (identification) task of the pattern recognition 

scheme. In such a case, response patterns for different analytes will be represented by points 

distant to each other in the feature space, and hence it will be easy to identify which points 

represent which analytes. 

Despite best efforts, finding a good set of coatings that would easily identify all analytes 

of interests is not easy, or may not even be possible. This is particularly true when a number 

of mixtures of analytes are present in the environment, and the goal is to identify each mix­

ture with its individual components. In such cases, advanced pattern recognition techniques 
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specific to the problem need to be developed. Chapter 4 of this dissertation introduces three 

such pattern recognition techniques for the identification of mixtures of VOCs. 

Another important problem is the selection of a subset of the most useful coatings for the 

classification problem at hand when there are a number of possibly useful coatings available. 

When analytical methods summarized above fail to make such decisions, heuristic optimiza­

tion techniques can be employed to select the best subset of coatings. This problem is ad­

dressed in Chapter 5 of this dissertation where two techniques are introduced for the sensor 

array optimization problem. 

The experimental setup and data acquisition system are described in the remaining sec­

tions of this chapter. Also presented in this chapter are the selectivity challenges that the re­

sponses provided to the pattern recognition scheme. 

3.4 Experimental Setup 

The sensors used in this study were -QMHz QCMs purchased from Standard Crystals. 

Cr/Au contacts were evaporated onto the quartz by means of a resistive heating evaporator 

(Edwards Coating System E306A). Dilute solutions of polymers, typically 20^L of 0.3-3 % 

w/w, were used to spin coat the gold surfaces at 2000-5000 rpm. The sensors were then dried 

at -65 "C for 15-24 hours. The thicknesses of coatings were calculated from the frequency 

shifts caused by the coating [80]. The coated QCMs were then mounted in a sealed test fix­

ture, which housed six sensors. 

The vapor generation system consisted of a carrier gas, typically dry nitrogen flowing at a 

constant flow rate of 200 seem, a gas stream module, and a pair of three-way switchable 

valves, leading into the test fixture housing the six crystals. The gas stream module included 
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a VOC module and a reference module that served to establish the baseline. The switchable 

three-way valves were used to maintain continuous flow of the reference gas and the VOC, 

so that an uninterrupted steady state was maintained. The final output was a constant flow 

rate with periodical exposure to known levels of VOC. This flow was obtained by means of 

calibrated mass flow controllers (Tylan® general FC-280 AV) and conventional gas bubblers 

containing the analytes. The bubblers were composed of two connected compartments. The 

gas carrier bubbled through the solution in the first compartment, supplying the vapor, 

whereas the second analyte-containing compartment served as a headspace equilibrator. This 

resulted in a vapor stream of variable flow rate for different concentrations, but of constant 

level at each concentration. The vapor at various concentrations was further diluted with ni­

trogen to generate the final output mixtures of desired concentrations. 

The sensors were exposed automatically to the vapor stream by means of computer con­

trolled three-way valves and a MKS® multi-gas controller model 147B that controlled the 

mass flow controllers. Polyethylene and Teflon® tubings together with stainless steel or brass 

valves were used, with only Teflon and stainless steel being exposed to the analytes. Experi­

ments were performed at ambient temperature. Repeated measurements indicated reproduci­

bility of the collected data with insignificant variations, within experimental error, due to 

small temperature fluctuations. The frequency response was monitored using a Hewlett 

Packard® HP8753C network analyzer, interfaced to an IEEE 488 card installed in a PC, and 

HP8516A resonator-measurement software. Real time data were displayed and saved. The 

data were then analyzed to obtain frequency shifts (relative to the baseline) vs. VOC concen­

tration lines. Typical noise levels (standard deviations of the baseline) for the QCMs were 0.1 

Hz. Figure 3.4 depicts the overall schematic of the experimental setup. 
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Figure 3.4 Experimental setup 

Figure 3.5 illustrates a typical response pattern of the previously listed six coatings to 

toluene at seven different concentrations. Sensors were exposed to toluene at the shown con­

centrations in a random order, for a duration of 30 minutes each. After each toluene expo­

sure, sensors were exposed to dry nitrogen for an additional 30 minutes to flush toluene 
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molecules from the sensor surfaces. Figure 3.5 clearly illustrates the reversibility of the coat­

ings, as the sensor responses returned back to baseline levels during dry nitrogen exposure. 

Also note from Figure 3.5 that the amount of frequency change is proportional to the concen­

tration of the analyte. In fact, this proportionality is linear for all VOCs used in this study for 

the concentration range of interest (50~1000ppm), and the proportionality constant consti­

tutes the sensitivity of the sensor for that analyte, as defined in Equation 3.3. 

As another example. Figure 3.6 illustrates this linear relationship for TCE, where the 

horizontal axis is the concentration of the TCE and the vertical axis is the response of the 

sensors as frequency shifts from the baseline value. Note that the slope of each line defines 

the sensitivity of the coating for that analyte (TCE, in this case). 
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Figure 3.5 Typical response patterns of the six coatings to toluene 
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Figure 3.6 Linearity of the responses with concentration 

3.5 Identification of Individual VOCs 

Individual identification of these 12 VOCs was the initial goal of this project. To our sur­

prise, this turned out to be a very simple task for a single hidden layer multilayer perceptron 

(MLP) neural network with 6 input, 20 hidden and 12 output nodes. Out of 84 patterns, seven 

for each VOC for 12 VOCs, 30 were used to train the network and the rest were used to 

evaluate the performance. All 54 patterns were classified correctly. 
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3.6 Problems in Identification of VOCs in Binary Mixtures 

Identification of binary mixtures of VCXTs, was not as simple as the identification of indi­

vidual VOCs. Mixture of VOCs constitutes a significant roadblock to the identification of the 

individual components in the mixture, particularly when a dominant VOC is present in the 

mixture. The responses of sensors to other VOCs then becomes partially, or in some cases 

completely, masked by the response to the dominant VOC. Furthermore, certain combina­

tions of VOCs produce almost identical responses at different concentrations. For example, 

the responses of sensors to a mixture of VOCA and VOCB at concentrations [VOCA] and 

[VOCB], might be very similar to the response of sensors to a mixture of VOCc and VOCD at 

concentrations [VOCc] and [VOCD], respectively. Therefore, all responses were normalized 

with respect to concentration, so that the concentration information was removed from all 

responses. Furthermore, the response patterns of xylene, toluene, and TCE at different con­

centrations were particularly similar to each other, and responses to these VOCs were signifi­

cantly larger than the responses to other VOCs tested. These phenomena give rise to two re­

lated problems. The similarities of responses to mixtures with different dominant VOCs ren­

der identification of the dominant VOCs difficult, but the very presence of a dominant VOC 

makes identification of a secondary VOC difficult. 

An example illustrating the first problem is the case XL & MEK and TL & HX mixtures, 

where XL and TL are the dominant VOCs. The original responses to these mixtures with 700 

ppm of each VOC, as well as two sets of normalized responses are given in Table 3.2. 

In the first normalization scheme shown in Table 3.2(Norm.l), all sensor responses (sen­

sor outputs) were divided by the maximum frequency response in the array. In the second 

normalization scheme (Nonn.2), each response was divided by the square root of the sum of 
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the square of all responses. Both of these normalization schemes were tried since both are 

commonly used in signal processing, and depending on the particular application, one of 

them might be more advantageous than the other. As seen from Table 3.2 (and Figure 3.7), 

the second normalization scheme is more beneficial in this case, since it allows changes in 

the maximum response. Note that with the first normalization scheme, the nmimum re­

sponse is always mapped to one. We therefore used the second normalization scheme. 

Throughout the rest of this chapter, normalization will always refer to the second scheme. 

Figure 3.7 illustrates the effects of these normalization schemes on response patterns. The 

plots on the left are responses of the sensor array to the mixture of XL&MEK. The plots on 

the right are responses to the mixture of TL&HX. As we can see from Table 3.2 and Figure 

3.7, the responses of these sensors to two different mixtures result in very similar patterns. 

Figure 3.8 illustrates the second problem, where the presence of dominant VOCs masks 

the responses to secondary VOCs. Responses to four different mixtures of xylene with a 

Table 3.2 Comparing original and normalized responses of two mixtures 

1 
APZ 290 95 0.36 0.36 0.30 0.29 

PIB 793 264 1.00 1.00 0.81 0.81 

DEGA 154 54 0.19 0.20 0.16 0.17 

SG 172 60 0.22 0.23 0.18 0.18 

OV 138 51 0.17 0.19 0.14 0.16 

PDPP 411 139 0.52 0.53 0.42 0.42 
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second VOC are compared. Coatings are listed along the horizontal axes and the normalized 

sensor responses (in frequency changes) are plotted along the vertical axes. 

It should be noted that in all four mixtures shown in Figure 3.8, the concentration of xy­

lene was 150 parts per million (ppm), and the concentration of the secondary VOC was 700 

ppm. Despite the signitlcantly larger concentration of the secondary VOCs relative to that of 

xylene, their effects were almost completely masked by the responses to xylene. 

1000 
XLSMEK, unnormalized TL&HX, unnormalized 

APZ PIB DEGA SG OV PDPP 
XL&MEK, Nomi1 

APZ PIB DEGA SG OV PDPP 
XL&MEK. Nomi2 
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=•200 

APZ PIB DEGA SG OV PDPP 
TiaHX, Norml 

APZ PIB DEGA SG OV PDPP 
TL4HX. Nomi2 

So.5 

APZ PIB DEGA SG OV PDPP APZ PIB DEGA SG OV PDPP 

Figure 9.7 Comparing normalized and non-normaiized responses of two mixtures 
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Figure 3.8 Responses of six coatings to various mixtures of xylene 

Sixteen different concentration combinations of the following mixtures were considered; 

Octane Xvlene Toluene TCE Ethanol 

0C«& ACN XL&ACN TL&ACN TCE & TCA ET & ACN 

OC&ET XL&ET TL&ET TCE & MEK ET & MEK 

CX:&MEK XL & MEK TL&MEK TCE&TL ET&HX 

OC&TL XL&HX TL&HX TCE & ET ET & TCA 

OC&TCA XL&TCA TL & TCA TCE&HX 

Each column represents mixtures of one of the five dominant VOCs, (OC, XL, TL, TCE 

and ET) with one of other secondary VCXTs. Sensors were exposed to these mixtures at ail 

combinations of 150, 300, 500 and 700 parts per million (ppm), giving 16 combinations of 

concentrations for each of the 24 mixtures listed above (that is, 150 and 150, 150 and 300, 
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150 and 500, 150 and 700, 300 and 150,..., 700 and 500, 700 and 700 ppm). Twenty-four 

tnixtures of 16 different combinations of concentrations generated the 384-pattem database 

used in this study. 

It should come with no surprise that no neural network architecture or learning paradigm 

was able to converge for identifying even the dominant VOCs In the mixture, let alone the 

individual VOCs forming the mixture, and Figure 3.7 and 3.8 clearly demonstrates why this 

is the case. 

These figures also Illustrate the need for an effective methodology to classily patterns 

that look very much alike. Such a classification algorithm must be able to extract the subtle 

differences between the patterns. In the pattern recognition terminology, such patterns are 

referred to as overlapping class distributions In the pattern space. This is because when plot­

ted in the d- dimensional space, these patterns form overlapping clusters. 

Researchers working In the gas sensing areas have been collaborating with those working 

in signal processing and pattern recognition to solve this problem, and various approaches 

have been proposed. Most approaches have been limited to using standard pattern recogni­

tion methods with fme-tuning certain parameters to the specific problem at hand. 

As mentioned In Chapter 1, most standard approaches have been one of, or a combination 

of, principal component analysis, various neural network architectures, discriminant analysis, 

statistical pattern recognition schemes, etc. However, all of these techniques assume that the 

data come from a well behaving distribution, and simply attempt to classify or cluster the 

given data. A number of popular feature extraction and preconditioning schemes are being 

used to condition the data, however, blind use of these schemes, such as normalizing, Fou­
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rier/wavelet transform, denoising, etc. by themselves do not necessarily improve the separa­

bility of the data. 

The difficulty of the classification problem can be significantly reduced, if the patterns 

are carefully preprocessed to improve the separability of the data, by augmenting the subtle 

difference among the patterns. Three methods, specifically designed for enhancing pattern 

separability are proposed, described, and compared in the next chapter. 
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CHAPTER 4 

ENHANCING PATTERN SEPARABILITY 

4.1 Introduction 

Pattern recognition, the problem of identifying a multidimensional pattern into one of the 

prescribed classes, is of great importance in a variety of applications. All areas of engineer­

ing, economic and financial analysis, oceanography and seismology, forensic sciences, food 

sciences, medicine and other biological sciences, are just a few of areas where pattern recog­

nition has found applications. Researchers in all these fields have been working on develop­

ing faster, more accurate, more noise tolerant pattern recognition algorithms for decades, as a 

result of which various schemes have been devised. These schemes include, discriminant 

based algorithms [81], statistical pattern recognition algorithms (such as Bayes classifiers) 

[82], Fourier descriptors, syntactic algorithms [83], fiizzy logic algorithms [84, 85,86, 87], 

neural networks [85, 86, 87, 88, 89,90], and more recently support vector machines [91,92] 

among many others. Detailed information on these and various other pattern recognition 

techniques can be obtained from [93, 94]. 

The ideal case in a pattern recognition problem is to be able draw linear lines among pat­

terns of different classes in the multidimensional pattern space. The simplest problem can be 

formulated as follows: Consider a set of n-dimensional patterns X = {X,,X2,*",X^}, 

where each pattern x, belongs to one of two classes, labeled as "0" or "1". These patterns are 

considered linearly separable if there exists a linear line defined by - x, = 0 separating 

class "1" patterns from class "0" patterns, through 
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r<Oi/ X; € class 0 
WJ-XJ ' (4.1 

[> 0 if X, 6 class 1 

The idea can be easily extended to multiclass cases, where w then describes a hyper 

plane. The problem is that most practical applications generate patterns that cannot be line­

arly separated, or even patterns whose classes form overlapping clusters. The field of pattern 

recognition is therefore devoted to developing algorithms that can classify patterns that are 

not linearly separable. Various approaches have been proposed, including generating nonlin­

ear decision surfaces, as neural networks do, or somehow transforming the database through 

nonlinear mappings so that the data can be linearly separated, as support vector machines do. 

When transforming the data into linearly separable classes is difficult, or not possible, vari­

ous heuristic approaches that target increasing intercluster distances have been tried. For ex­

ample, Chandrasekaran et al. have used feature projection as a preprocessing algorithm to 

increase the separability of the data, where features are mapped to a higher dimension. They 

have also tried to relieve the burden on the classifier, by converting an n-class problem into n 

two class problems [95]. Diamantaras et al. have used a different approach where they con­

tinuously monitored the patterns, which are sequentially fed into a single McCuUoch and 

Pitts neuron (perceptron), to detect each pattern that violates linear separability. They were 

able to flag any such pattern by carefully observing the weight change, and skip any linear 

separability violating patterns to be dealt with later. In the second round, all flagged patterns 

are clustered among each other into linearly separable clusters, further flagging still trouble­

some patterns. By combining all such single neurons, they claim that their algorithm can 

learn all convex, but nonlinearly separable classes [96, 97]. 
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Another interesting approach has been developed by Osboum et al. where they use the 

concept of region of influence for clustering data. The method, called visually-empirical re­

gion of influence pattern recognition (VERI-PR), is based on computing ^-dimensional 

neighbors of each (^-dimensional) pattern [98]. However, the neighbors are not determined 

using any of the standard distance metrics, but rather via an empirically determined shape. 

This shape, called the VERI shape roughly resembles a dumbbell, as two semicircles are 

combined through V- shaped lines, and at the center of each circle lies a square. The VERI 

shape is illustrated in Figure 4.1 along with its rotated and scaled versions. 

Figure 4.1 Rotated and scaled versions of tlie VERI shape 

The algorithm compares each data point with all other data points one by one, by placing 

the two data points to be compared on top of the squares of the template VERI shape. The 

VERI shape is then scaled and rotated to see if any of the data points remaining in the dataset 

fall within the VERI shape. If no third data point falls within the VERI shape, the two data 

points compared are placed in the same cluster. Otherwise, those two points do not belong 

the same cluster. The algorithm has no input parameters other than the data to be clustered, as 

the VERI shape is fixed and built-in to the algorithm. The VERI-PR algorithm was originally 

developed for VOC identification, but the authors claim that it is applicable to a variety of 

pattern classification problems. A detailed description of the algorithm is available from the 
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Sandia National Laboratories website [99], whereas the application of the algorithm to VOC 

data, as well as how it can be used for optimum feature selection can be found in [100]. 

One of the recent developments in pattern recognition involves support vector machines 

(SVMs) which create a linear separating plane to create a pattern classifier. The main 

strength of SVMs is that they are able to do this using a minimum amount of data. The algo­

rithm keeps track of those patterns which are closest to the decision boundary between the 

classes, and tries to maximize the margin separating the decision boundary hyperplane and 

the selected patterns. These patterns, which determine the decision boundary, are called the 

support vectors. SVM is an algorithm for separating linearly separable patterns; however, it 

can easily be extended to handle nonlinearly separable classes. When patterns are nonlinearly 

separable in the original feature space, SVMs use a kernel to transform the data from its 

original space into a higher dimensional space where the data is linearly separable. The per­

formances of SVMs are very much dependent on the kernel chosen, and unfortunately, there 

are no known methods to consistently choose the most appropriate kernel for the problem at 

hand. However, various kernels have been tried and reported to work well on various types 

of problems. The kernels that are most often used include the Gaussian radial basis (unction 

kernel [91,101], hyperbolic tangent kernel [91,102] and the polynomial kernel [91]. 

Many of these methods, however, do not specifically target increasing the intercluster 

distances between patterns belonging to different classes, and those, which indirectly in­

crease intercluster distances do so by increasing the dimensionality of the problem as well. In 

this chapter three alternative approaches are proposed, all of which specifically target in­

creasing the intercluster distances to enhance pattern separability. In the first approach, a 

fuzzy inference system is built where the separation of patterns is achieved through strategic 
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selection of membership functions. In the second approach, interciuster distances are in­

creased through feature range stretching (FRS), a scheme inspired by companding algo­

rithms for communications and the histogram equalization (contrast stretching) for image 

processing. One disadvantage of FRS processing is that it also increases intracluster dis­

tances. Finally, in the third approach, interciuster distances are increased, without increasing 

intracluster distances, through a nonlinear cluster transformation (NCT) which is learned by 

a generalized regression neural network (GRNN). 

4.2 Fuzzy Inference Systems for Enhancing Pattern Separability 

4.2.1 Background 

Supervised neural networks and fuzzy inference systems are two common methods used 

in pattern recognition when representative training data are available. Supervised neural net­

works are capable of learning a mapping function between the samples of feature vectors 

(sensor responses) and their corresponding classes (VOCs), through a highly nonlinear and 

massively parallel structure that resembles the structure of the nervous system [88,89,90]. A 

number of neural network architectures and training algorithms have been developed over the 

years, each of which provides a near optimum solution to various classification problems. 

Among these, the multilayer perceptron with backpropagation learning rule has enjoyed con­

siderable success in a large range of classification problems. However, for the database under 

consideration, no MLP was able to identify even the dominant VOC, let alone secondary 

components of the VOC mixtures. The identification of the dominant VOC using a fiizzy in­

ference system, followed by determining the secondary VOC by a subsequent MLP was 

therefore chosen as the design strategy. 
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Fuzzy logic approaches have also enjoyed considerable success among pattern recogni­

tion researchers [84, 85, 86, 87]. At the heart of these approaches is a fuzzy inference system 

(FIS) that classifies patterns using a predetermined set of IF/THEN rules. Unlike a neural 

network which uses crisp numerical values for computation, FIS uses fuzzified linguistic val­

ues. This Is achieved using a selection of ftizzy sets, such as "small", "large", "very large", 

and defining membership Unctions (MFs), /ismuix), HiargbHx), etc. on these sets. Typical 

functions used for this purpose include triangular, trapezoidal, Gaussian, and bell shaped 

membership functions. The system first decides how much each input x belongs to a mem­

bership function and assigns a membership value A = {Small, Large, Very large, etc}. 

Based on these membership values, the system then decides how much each rule is satisfied. 

The mechanics of an RS is detailed through an example in the following paragraphs. The 

FIS designed in this study, FNOSE (fuzzy nose), was fine tuned for dominant VOC identifi­

cation. The secondary VOC identification was achieved by using a neural network, hence a 

neurofuzzy approach. The overall block diagram of a typical FIS is illustrated In Figure 4.2. 

4.2.2 Membership Function Selection and Fuzzification 

The first step Involved in an RS is fiizzification, the conversion of numerical values to 

linguistic values. Usually, most fiizzy systems work on normalized data, and therefore the 

numerical values that need to be converted into linguistic values fall into the [0 1 ] range. 

Each sensor response constitutes an input to the FNOSE, and therefore each sensor (APZ, 

PIB, DEGA, SG, OV275 or PDPP) is considered as an input variable. The fuzzification step 

of E^OSE converted the normalized numerical values of sensor responses into linguistic 

variables through previously defined six MFs. Corresponding linguistic variables (fuzzy sets) 
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Figure 4.2 Block diagram of a typical fuzzy inference system 

were defined as VS (very small), S (small), M (medium), L (large), VL (very large), and XL 

(extra large). 

In our initial design of FNOSE, trapezoidal MFs were placed at equal distances from 

each other for all sensors, as typically done in generic FIS designs. For example, all sensor 

outputs in the [0 0.2] range were considered very small, all sensor outputs in the [0.2 0.4] 

range were considered as small, and so forth. It was soon realized that this approach was far 

firom being optimal, since the individual ranges of sensor outputs were completely ignored. 
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Figure 4.3 Initial selection of membership functions 

Figure 4.3 illustrates this inefficient selection of membership functions, where all 

niembership functions were placed at (approximately) equal distances from each other, and 

the same selection of membership functions was used for all sensors. 

A better selection of MFs must consider the dynamic ranges of each input variable (sen­

sor). Consequently, six trapezoidal MFs were placed along the [0 1] range according to the 

dynamic range of individual sensor responses for each sensor. As a first example. Figure 4.4 

illustrates the histogram of APZ responses of the 384-pattem database. The horizontal axis 

shows the APZ responses and the vertical axis shows the frequency of appearance of these 

responses. As seen from this histogram, the [0.25 0.33] interval constitutes the effective dy­

namic range for this sensor. Since almost no APZ response falls outside of this range, MFs 

placed outside this range provide no information to the FIS. Therefore, this range was di­

vided into six intervals (for six MFs) such that maximum discriminatory information can be 

obtained from the placement of the MFs for this sensor. 
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Histogram of APX rssponses 
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Figure 4.4 Histogram of APZ responses 

Figure 4.5 illustrates how APZ membership functions were placed in the effective 

dynamic range of the APZ sensor. As seen in Figure 4.5, all normalized APZ responses less 

than 0.26 were assigned to the VS membership function, those in [0.27 0.28] and [0.28 0.29] 

intervals were assigned to S and M membership functions, respectively, and so forth. Note 

that there is some overlap among the membership functions, indicating that certain values 

belong to two membership functions with varying degrees. For example, the value 0.27 

equally belongs to both VS and S membership functions, whereas 0.268 belongs more to VS, 

and 0.272 belongs more to S membership function. 
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Figure 4.5 Membership functions for APZ 

As a second example. Figure 4.6 illustrates the histogram of normalized PIB responses, 

which are concentrated mostly in the [0.65 0.93] range, the effective dynamic range of the 

PIB sensor. Therefore, the PIB MFs must be placed strategically in this interval to obtain the 

maximum discriminatory information from the sensor. 

Histogram of PIB mpon<«« 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Zoom inio (0.66 0.96] rwig« 

Figure 4.6 Histogram of PIB responses 
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Figure 4.7 illustrates the PIB membership functions placed on the basis of the histogram 

shown in Figure 4.6. All PIB responses less than 0.65 were assigned to the VS membership 

function (not shown in Figure 4.7). It is obvious fi:om Figures 4.4 and 4.6 that a MF that is 

large for one sensor may be small for another. For example, the value 0.35 is a large value as 

an APZ response, but it represents a very small value for a PIB response, justifying the 

approach taken in the placement of the MFs. 

Membership functions, determined similarly, for other sensor outputs were placed mainly 

in the [0.05 0.28] interval for DEGA, [0.15 0.22] interval for SG, [0.03 0.3] interval for 

OV275, and (0.12 0.5] interval for PDPP. 

^(PIB) Membership function plots 
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Figure 4.7 Membership functions for PIB 
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4.2.3 Rule Selection and Implication 

The second step in designing an FIS is determining fiizzy rules, by which the FIS makes 

its classification decisions. Applying these rules to the data, and computing how much each 

rule fires is called the implication step in the fuzzy logic terminology. Fuzzy rules are usually 

of the following form: 

IF <statement A> AND/OR <statement B> AND/OR.... <stutement N> THEN <class = C> 

The IF part is called the antecedent (or premise), and the THEN part is called the conse­

quent (or conclusion) of the rule. The antecedent may involve a number of conditions joined 

by the logical operators AND or OR. 

Several approaches can be used to determine the fuzzy rules. One of the commonly used 

methods relies on using past experience or expert advice, where the rules are determined by 

carefully examining and hand scoring the data. This method is particularly applicable to 

small databases. The 384-pattem database obtained for this study falls into this category. 

Other methods of determining rules include k-means or tiizzy c-means clustering algorithms 

[85, 87]. In these methods, the cluster centers are taken as rules, and the variances of the data 

from the cluster centers define the range of the rule. 

The FNOSE fuzzy inference system employed the expert advice method for generating 

the fuzzy rule base, and 55 rules were extracted from data. The following example taken 

from the rulebase generated for this study illustrates the general form of the rules: 

IF (APZ is VL) AND (PIB is XL) AND (DEGA is VS) AND {SG is VS) AND (OV275 is 

VS) AND (PDPP is S) THEN (VOCl is ICE) (0.5) 

This rule is interpreted by the FIS as follows: the dominant VOC (VOCl) is TCE, if the 

response of the APZ coated sensor is in the VL range, and the response of the PIB coated 
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sensor is in the XL range,..., and the response of the PDPP coated sensor is in the 5 range. 

The weight of this rule is 0.5. The weight of the rule determines how much importance 

should be given to rules that have identical antecedents, but different consequences. Recall 

that there are many similar patterns of different VOC classes, and these patterns generate 

rules with identical IF parts but different THEN parts. Depending on how often each rule of 

identical antecedents appears, a weight is assigned to that rule. Note that not all of the inputs 

may be necessary for each rule. A subset of inputs may be adequate to identify a certain class 

(please see the example below). 

Rule selection is the heart of any RS and must be done very carefully. Increasing the 

number of rules by adding new rules that cover only individual patterns may make the sys­

tem too complicated and unstable, whereas having too few rules may not allow the system to 

generalize well. It is important to choose rules that would apply and correctly classify a large 

number patterns. It should be noted that making a rule for every case in the data will only 

make the system very unstable since there would be a lot of rules with the same antecedent 

(IF part), but different consequences (THEN parts). 

Once the rules are selected and input values are fuzzified, the FIS then decides how much 

each rule is fired for a given input. Fuzzy rules which consist of statements combined 

through set-theoretic operations can be evaluated by computing the minimum of membership 

values for antecedents joined by AND, and computing the maximum of membership values 

for those joined by OR. In particular, 

Q = AnBn...nZ=>//„(x) = min(//^ (x), (x),..., (x)} = //^ (x) A (x) A ...//^ (x) 

0 = A U U... U Z => = max(//^ (x),//a(x),...,//2 (x)) = (x) v (x) v 
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4.2.4 Aggregation and Defuzzification 

Due to flizziness in the system, usually more than one rule fires for every set of inputs. 

The fuzzy output sets generated by the firing rules are then combined to determine the com­

posite output. This procedure is called aggregation, and it is followed by the last step, de­

fuzzification. A number of methods are available for both aggregation and defuzzification. 

Functions that are commonly used tor defiizzification include centroid of area, mean of 

maximum, smallest of maximum, largest of maximum, bisector of area, and centroid of 

maximums [85]. Among these, centroid of area is used most often which is defined by Equa­

tion 4.2 

j / i ,  { z )  z  d z  
7  - Z  ( A O  
''CEKTROID Z ' 

J//, ( Z )  c i z  

where, jilc' is the membership value of the aggregated output, and z is the independent vari­

able. Figure 4.8 summarizes all the steps included on a sample input and sample flizzy rules. 

Consider the input APZ=0.2S2. PIB~0.875, DEGA=0.150, SG=0.250, OV274=0.30 •di\d 

PDPP=0.40, and two sample fiizzy rules that fit these inputs: 

IF (APZ is M) AND (PIB is VL) AND (DEGA is M) THEN (VOCI is OC) 

IF (APZ is S) AND (PIB is XL) AND (DEGA is L) THEN (VOCI is XL) 

Note that, as mentioned earlier, all inputs may not be necessary to identify a class, and 

the above two rules are examples of this case, where we have used only three inputs. In the 

following example, minimum of fuzzy membership values is used for implication, and sum­

mation of fiizzy output sets is used for aggregation, followed by centroid of area for defuzzi­

fication. 
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Figure 4.8 Sample FIS flow diagram 
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This defiizzification typically applies to Mamdami Type fuzzy inference systems, for 

which the outputs are also defined by membership Unctions. Mamdami type systems become 

particularly efficient when the individual classes might be related to each other, or when a 

particular input may belong to more than one class with varying membership values. In sys­

tems, where the output classes are independent, or where each input may belong to one and 

only one class, a second type of RS becomes more useful. Sugeno Type fiizzy systems, such 

as FNOSE, use crisp values, rather than fiizzy membership functions for outputs. This auto­

matically eliminates the deflizzification step, since defuzzification becomes simply a 

weighted average of how much each rule fu-es for every input. The crisp outputs were given 

numerical values such as TL=0, XL=0.25, TCE=0.5, OC=0.75, ET=1 for the five dominant 

VOCs. Since any input can (and fi-equently does) fire more than one rule (due to overlap in 

membership fiinctions), the output is typically an intermediate value of those listed above. 

Therefore, the output ranges were determined as follows: 

0-0.125 :TL 

0.125-0.375: XL 

0.375 - 0.625: TCE 

0.625 - 0.875: OC 

0.875 - 1 : ET. 

In some cases, the output was at the border of the output ranges listed above. The per­

formance of this system is presented in the next section, where the classification percentages 

are given as intervals. The lower limits of the intervals assume all border cases as failure, and 

the upper limits assume all border cases as success. 
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4.2.5 Results for the Neurofuzzy Approach 

4.2.5.1 First Stage: Performance for Dominant VOC identification 

Fifty-five rules were manually chosen from the tables given Appendix II. These tables 

were generated by a program, which converted all signals with numeric values to linguistic 

values depending on the sensor and its individual membership ftinctions. The 55-rule rule 

base given in Appendix III was obtained by hand scoring the data. It should be noted that 

these rules did not cover the entire database, that is, there were patterns that were not covered 

by any of the rules which contributed to the error of the system. Obviously, including these 

patterns in the rule base would make the system classify those correctly, but including rules 

that only apply to single cases causes the system to memorize certain patterns and prevents it 

from learning and generalizing. Table 4.1 summarizes the FNOSE performance. 

4.2.5.2 Second Stage: identification of Secondary VOCs 

Although a NN was unable to classify signals according to their dominant VOCs, it was 

possible to train a NN to recognize the secondary VOCs, once the dominant one was 

Table 4.1 Peiformance of FNOSE for dominant VOC Identification 

•yillllUIIIIBHIflllilllllllH 
•BBHI 

ETHANOL 64 55/57 87% TCE 

TOLUENE 80 70/70 87% TCE(3), ET(3), XL(2) 

XYLENE 80 71/77 92% TOLUENE 

OCTANE 80 71/73 90% TCE 

TCE 80 70/70 87% XL(8), ET, OC 

TOTAL 384 336/347 89% Mostly TCE and XL 
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identified using FNOSE. Identification of secondary VOCs was therefore performed by one 

of five MLPs, each specifically trained to recognize the mixtures of one dominant VOC. Ta­

ble 4.2 presents the individual network structures and the number of training data used for 

each network, whereas Figure 4.9 illustrates the architecture of a 6x20x5 MLP. 

Table 4.2 Secondary VOC identification networit ciiaracteristics 

ETHANOL 6x20x5 0.05 30 64 

TOLUENE 5x30x5 0.05 40 80 

XYLENE 5x24x5 1.20 40 80 

OCTANE 5x20x5 0.05 40 80 

TCE 5x30x5 0.05 40 80 

• VOC 

• VOC 

PDPP 

6 INPUT 
NODES 

VOC 

^ VOC 

5 OUTPUT 
NODES 

20 HIDDEN LAYER NODES 

Figure 4.9 MLP arciiitecture 
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4.2.5.3 Results and Discussion of Second Stage Performance 

The results of secondary VOC networks are sununarized in Table 4.3. The number that is 

given next to each mixture refers to the number of misclassified patterns for that mixture, out 

of sixteen. There were 26 misclassiflcations out of 384 signals, giving a classification per­

formance of 93% over the entire database, or 87% over the test database. 

Table 4.3 Perfonnance of the secondary VOC neural networks 

TCE & TL 0 TL & ACN I XL & ACN 3 OC & ACN 2 ET & ACN 0 

TCE&MEK 0 TL & MEK 0 XL & ET 4 OC & MEK 0 ET & MEK 0 

TCE & TCA 0 TL & HX 2 XL & HX 2 OC&TL 1 ET & HX 0 

TCE HX 0 TL & ET I XL & MEK I OC & ET 3 ET& TCA 0 

TCE & ET 0 TL & TCA 1 XL & TCA 4 OC & TCA 1 

It is interesting to note from Tables 4.2 and 4.3 that xylene mixtures were the most diffi­

cult ones to identify. As Table 4.2 points out, the lowest error goal (mean square error) that 

was reached by any network training for xylene mixtures was 1.2, whereas the lowest 

achieved error goal for networks of other mixtures was 0.05. Table 4.3 shows the effect of a 

higher error goal in network training, because xylene mixtures had the largest number of 

misclassification. These results agree with our previous knowledge of xylene mixtures. Re­

call that responses of all sensors to xylene were significantly larger compared to the re­

sponses to other VOCs, and this made the detection and identification of other VOCs very 

difilcult in the presence of xylene. 
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4.2.6 Overall Performance 

The process described above is a two-stage scheme, where the dominant VOC is first 

identified using an RS, and the secondary VCXT is then identified using a MLP. The overall 

performance depends on the combined performance of both systems. In particular, the identi­

fication of the secondary VOC is irrelevant, if the dominant VOC identification is incorrect. 

The actual classification performance over the entire database, is therefore 83%, which is 

89% (first stage) of 93% (second stage). Considering that no preprocessing was performed, 

this can be viewed as a very promising performance. The FNOSE / ANN system can be 

summarized by the block diagram in Figure 4.10. 

DOMINANT VOC 

ET^ 

Mixture 

Response 

ET MIXTURES 
CLASSIFIER 

TL MIXTURES 
CLASSIFIER 

OC MIXTURES 
CLASSIFIER 

XL MIXTURES 
CLASSIFIER 

TCE MIXTURES 
CLASSIFIER 

-< 

SECONDARY VOC 

• .VCN, MEK. HX. TCA 

• ACN, .MEK, HX. ET. TCA 

• ACN. .MEK, TL, ET, TCA 

• AC.N, ET, HX, MEK. TCA 

• TL, MEK, TCA, HX, ET 

Figure 4.10 VOC Mixture identification system using FNOSE and a neural network 
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4.3 Feature Range Stretching (FRS) for Enhancing Pattern Separability 

4.3.1 Approach 

Of the two stages described in the neuroliizzy approach utilizing an RS for dominant 

VOC identiflcation and an ANN for secondary VOC identification, the first stage is the more 

challenging one. This is due to strong similarities between signals of different dominant 

VOCs. A new preprocessing scheme was developed in an attempt to increase the interciuster 

distances between the signals, so that both dominant and secondary VOCs could be identified 

by neural networks. 

Our initial approach was based on the use of a companding (compress/expand) tunction 

to enhance the subtle differences between similar responses. Companding is a standard 

nonlinear scaling procedure used in communication systems to amplify minor differences in 

signals [103]. Using a companding tunction as a preprocessor prior to training allowed neural 

networks to achieve a reasonable overall classification performance (86% overall classifica­

tion, compared to 83% of FNOSE+ANN). However, a new method for stretching dynamic 

range of features was developed and adopted for improved performance and robustness of 

the overall classification system. 

This preprocessing scheme was inspired by the membership tunction selection scheme 

that was used in FNOSE, the companding scheme mentioned above, and the histogram 

equalization technique used in image processing for improving image quality. In effect, this 

preprocessing algorithm maps a narrow range of sensor responses to a wider range to in­

crease the separability of the data. 
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For example, as seen in Figure 4.4, all normalized APZ responses were between 0.25 and 

0.32. This range can be mapped to [0 1] by using a suitable function. Similarly, all normal­

ized PIB responses, which were predominantly in the [0.65 0.95] interval, can also be 

mapped to [0 1 ] range by using another suitable function, and so forth. In effect, the ranges of 

features can be stretched firom a narrow region to the full range of [0 1], hence,/eafure range 

stretching (FRS). This method can be thought of as a one-dimensional version of histogram 

equalization used in image processing for improving image quality, and we can follow a 

similar procedure to that given in [104] to find the suitable mapping function. Just like in 

histogram equalization, where the problem is to map the gray levels trom a narrow range to a 

fiiU dynamic range, our problem is to find a transformation function of the form 

y = Tix) (4.3) 

which will map a given narrow sub interval of [0 1 ] to the full range. Intuitively, it is reason­

able to expect the following properties from such a mapping function: 

i. T(x) should be a single valued and monotonically increasing function in the inter­

val [0 1], so that the function preserves the relative amplitude ordering within the 

input signal, and 

ii. T(x) should satisfy 0 < r(.r) < 1 for 0 < .r < 1, so that the mapping stays within 

the interval [0 I]. 

The values of any specific sensor output can be considered as random quantities in [0 1] 

interval. If we further assume that these random quantities are continuous (discrete case is a 

natural extension to this, as discussed later), the original values, x, and the transformed values 

y, can be represented by their probability density functions, px(x) and Py(y), respectively. 
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From the theorem of transformation on random variables, if pxix) and T(x} are known, we 

c a n  c o m p u t e  P y ( y ) b y  

P y ( y )  =  P v ( - ^ )  
dx 

dy 
(4.4) 

t=r'(y) 

provided that T ' ( y )  is also monotonically increasing (unction [105]. 

Now consider/tf.vj, the cumulative distribution function of x, for which the conditions 

listed above are satisfied: 

f M )  =  \ p ^ ( ^ < p ) d ( p  (4.5) 

If we use this cumulative distribution function as our transformation function, we obtain 

I 

y  =  T { x )  =  =  ̂  p ^ { ( p ) d < p  

from which we can compute the derivative dy/dx as 

(4.6) 

dy _ d 

dx dx 

% 

\0 
(4.7) 

Substituting Equation 4.7 into Equation 4.4, we obtain 

Pv(3') = PrU)~ 
dv t=r-'(v) 

1 

pAX) 
(4.8) 

t=r"'( >1 

= 1 forO< V < I 

which is a uniform density function, regardless of T ' ( y ) .  In other words, if we use the cumu­

lative distribution functions as our mapping Unction, the transformed values will be uni-
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fortnly distributed in the [0 I] interval. Consequently, values squeezed within a narrow 

subinterval of [0 1] are stretched to the [0 1] interval. 

Note however, that the patterns that are of interest are discrete, and therefore the above 

arguments need to be modified for the discrete case. In discrete case, the cumulative distribu­

tion function can be approximated by a running sum of the form 

J'["l = 7-(.v.) = î  = ip,(.r.) (4.9) 
,=0 ' 1=0 

where is the frequency of /''' sample, and T is total number of samples (384 for the VOC 

database). 

Due to the nature of the patterns that are of interest in this study, it is not very easy to 

compute the above given distributions, since it requires the computation of the frequency of 

each value. Considering that this procedure needs to be repeated for each sensor, the compu­

tation of the exact transformation function(s) becomes a formidable task. Fortunately, it can 

easily be approximated, as discussed below. 

Figure 4.11 shows a different way of interpreting the histogram of APZ values. Instead of 

plotting the frequency of occurrence of values (as in Figure 4.4), all 384 values are plotted in 

an ascending order against an index running fi'om 1 to 384. As seen in this figure, a large 

number of APZ responses fall into the very close vicinity of 0.3. We would like to transform 

this characteristic such that all values from zero to one can be (approximately) equally util­

ized. Recall that the exact transformation Unction that is required is the cumulative distribu­

tion function of .r, which in this case is the APZ response. This cumulative distribution func­

tion,/ipzfxA can be approximated simply by inverting the curve in Figure 4.11 and plotting it 

against the interval [0 1] divided into 384 equal partitions. 
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Figure 4.11 APZ responses sorted in ascending order 

Figure 4.12 illustrates this point, where the horizontal axis Is the sorted APZ responses, 

and the vertical axis is the desired [0 1] range. Also shown in Figure 4.12 is a smoother 

charactersitic that is superimposed on/ap-Ax). This is an approximation of the original 

characteristic, obtained by a sigmoid function centered at 0.27 and multiplied by 50. The 

approximation function was used for the actual mapping due to its simplicity and robustness 

to noise. 

y(x) = 50- 1 
l + ̂ -U-0.27) (4.10) 

This function was then realized by using a radial basis function neural network (RBFNN) 

which is commonly used for function approximation and realization. 
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Figure 4.12 Stretching APZ responses 

Figure 4.13 illustrates the sorted PIB responses, whereas Figure 4.14 shows the cumula­

tive distribution tlinction obtained by inverting the curve in Figure 4.13 and plotting it 

against the desired range of [0 I]. The smoother characteristic is the actual mapping function 

obtained by the sigmoid. 

As a last example. Figure 4.15 illustrates sorted PDPP responses, fi-om which we see that 

most PDPP responses are in the 0.15 to 0.5 range. Figure 4.16 shows the mapping function. 

fpDPp(x}, obtained by inverting the above characteristic and plotting it against the desired 

range of [0 I]. Note that in this case, a linear combination of two sigmoid functions is used to 

obtain the overall desired characteristic. 
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Also shown in Figure 4.16 is the approximated mapping function, obtained from the two 

sigmoid functions as shown below. 

<^'2 '  

y(x) = y|(ii)| x=0-0J9 + y2(*)| x=039-1 

Mapping tunctions were generated for the other three sensors in a similar fashion. 

4.3.2 Identification of Dominant and Secondary VOCs using FRS 

Similar to the earlier approach, a two-stage procedure was implemented to identify domi­

nant and secondary VOCs. However, all signals were preprocessed by normalization fol­

lowed by FRS prior to network training. The first network identified the dominant VOC in 

the mixture. Depending on the outcome of this network, one of the five secondary VOC net­

works was used, each of which was trained to recognize the secondary VOCs in the presence 

of a specific dominant VOC. 

A two hidden layer multilayer perceptron of 6x50x20x5 architecture was trained using 

backpropagation. The randomly selected training data consisted of 153 patterns uniformly 

chosen from mixtures of five dominant VOCs. 

4.3.3 Results for FRS Processed VOC Identification 

Table 4.4 presents the results of the dominant VOC neural network. Numbers given next 

to mixture names are the number of misclassifications out of 16 different concentration com­

binations of two VOCs. 
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Table 4.4 Performance of dominant VOC network, trained witii FRS processed data 

TCE & TL 5 TL & ACN 0 XL & ACN 0 OC & ACN 0 ET & ACN 0 

TCE&MEK I TL & MEK 0 XL&ET 0 OC & MEK 0 ET & MEK 0 

TCE & TCA 0 TL&HX 5 XL&HX 0 OC&TL 3 ET & HX 0 

TCE «& HX 0 TL & ET 0 XL & MEK 0 OC&ET 0 ET& TCA 0 

TCE & ET 1 TL & TCA 0 XL & TCA 0 OC &TCA 0 

The total number of misclassifications was 15, giving a classification performance of 

94% over the training data, and 96% over the entire database. Once the dominant VOC was 

identified, the appropriate secondary VOC network was used to identify the secondary VOC. 

The architectures of these networks are given in Table 4.5. 

Table 4.5 Secondary VOC identification network characteristics 

ETHANOL 6x20x4 0.05 24 64 

TOLUENE 6x20x7 0.01 41 112 

XYLENE 6x30x5 0.05 40 80 

OCTANE 6x20x4 0.05 24 64 

TCE 6x30x4 0.05 24 64 

The performances of the secondary VOC networks are given in Table 4.6. The total num­

ber of misclassifications in this case was 16, which was superior to earlier results. Only 153 

signals were used in the training database, as opposed to 190 used with the earlier secondary 

VOC networks of neurofuzzy approach. The total classification performance over the test 

data was 93% and over the entire database, it was 96%. 
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Table 4.6 Performance of the secondary VOC network, processed with FRS 

TCE «& TL 0 TL&ACN 0 XL & ACN 0 OC & CAN 0 ET&ACN 0 

TCE & MEK 0 TL&MEK 2 XL & ET 2 OC & MEK 0 ET&MEK 1 

TCE«&TCA 0 TL & HX 3 XL & HX 3 OC & TL 0 ET & HX 0 

TCE & HX 0 TL & ET 0 XL & MEK 1 OC & ET 3 ET& TCA 0 

TCE & ET 0 TL & TCA 0 XL & TCA I OC & TCA 0 

The mixtures of toluene and xylene with secondary VOCs had the largest number of mis-

classifications for the secondary VOC. This is not surprising since these two VOCs exhibit 

very large responses in all sensors, masking the contribution of the secondary VOC. It is also 

worth mentioning that the xylene network was able to converge to an error minimum of O.OS 

(see Table 4.5), whereas the xylene network used in the neurofijzzy approach that was trained 

with data without FRS preprocessing was not able to converge to an error goal smaller than 

1.2 (see Table 4.2). 

As it was in the E^OSE case, the overall performance of the two-stage identification sys­

tem depends on the individual performances of both stages. In particular, the performance of 

the second stage is meaningless, if the dominant VOC is identified incorrectly. Therefore, the 

overall classification performance over the entire database was 92% (96% of 96%). 

Considering the smaller training database size, small feature vector size, and the network 

error minima achieved along with the results obtained, FRS preprocessing not only improved 

the overall system performance, but also made it more robust. 
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4.3.4 Principal Component Analysis (PCA) 

The effect of FRS processing was also investigated by using the principal component 

analysis (PCA), a well-known dimensionality reduction and classification algorithm. PCA 

was performed on raw data, as well as on FRS processed data. Three principal components, 

corresponding to the largest three eigenvalues of the covariance matrix (of the data), were 

plotted on a 3D plot to illustrate the effect of these processing schemes on intercluster and 

intracluster distances. 

Principal component analysis (PCA) is commonly used to reduce the dimensionality of 

feature vectors [90]. The idea Ls to find a set of n orthogonal vectors along which the m di­

mensional data has the largest variance. Large variance is usually interpreted as more infor­

mation and therefore, the m dimensional feature vector is replaced by its n dimensional pro­

jection on these orthogonal vectors, where n<m. 

Principal components are computed by projecting the data on the orthogonal vectors, 

which are eigenvectors of the covariance matrix, C = E{X • } . £ is the expected value op­

erator, X is the m dimensional feature vector, and x^ is the transpose of x. The eigenvectors 

corresponding to the n largest eigenvalues are selected, and the principal components are 

then computed by projecting the data onto n dimensional space spanned by the selected ei­

genvectors. 

It is often possible to reduce the dimensionality of the feature vector down to two or 

three, which allows simple visual classification of the patterns when their principal compo­

nents are plotted on a two or three-dimensional plot. In the following paragraphs, these plots 

are used to illustrate the effect of the preprocessing algorithms discussed above. Detailed de­
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scription of PCA is available in most neural network and pattern recognition texts, such as 

PCA was first applied to unprocessed, normalized raw data to reduce the dimensionality 

from six to three, and Figure 4.17 illustrates the data clustered into five clusters in a 3D space 

corresponding to the five dominant VOCs. Note that, as expected from the sensor frequency 

responses, OC and XL responses overlap considerably, and TL responses are very close to 

OC and XL responses. 

The PCA of the FRS processed data was then computed as shown in Figure 4.18. As seen 

in this figure, FRS processing considerably increased the intercluster distances. All mixtures 

are now clearly separable on the basis of their dominant VOCs. This figure clearly demon­

strates the viability of the FRS preprocessing approach. 

[90] 
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Figure 4.17 Principal components of raw data 
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Figure 4.18 Principal components of FRS processed vectors 

4.4 Nonlinear Cluster Transformation for Enhancing Pattern Separability 

4.4.1 Motivation 

The FRS preprocessing introduced in the previous section exclusively targets (and 

achieves) increasing the intercluster distances, however, it also increases the intracluster dis­

tances as well. Furthermore, it requires a nonlinear stretching function to be determined 

manually for every feature. 

One well-known method specifically designed to increase the intercluster distances and 

reduce the intracluster distances is Fisher's linear discriminant (FLD) analysis. However, the 

original motivation behind the FLD was reducing the dimensionality of the data subject to 

maximizing the intercluster distances and minimizing the intracluster distances. As a conse­
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quence of this, FLD has serious limitations regarding the dimensionality of the data, number 

of classes and number of samples within the data. 

In this section, these limitations of FLD are discussed, and an intuitive cluster 

transformation method is proposed for increasing the intercluster distances while keeping the 

intracluster distances constant. In nonlinear cluster transfonnation (NCT), a training dataset 

is used to translate the cluster centers away from each other and a generalized regression 

neural network (GRNN) is employed to learn the functional mapping between original 

clusters and transformed clusters. The performance of this proposed method is tested on two 

synthetic benchmark databases of low separability as well as the VOC mixture database. 

Initial results obtained using NCT have been very promising, demonstrating the effectiveness 

of the approach in separating patterns that have small intercluster distances. 

4.4.2 Background 

The required separability for challenging pattern recognition problems is ol^en obtained 

by using appropriate feature extraction algorithms as a preprocessing step to classification. 

The fundamental objective of feature extraction is to reduce the dimensionality of pattern 

vectors without losing discriminatory information. The general problem of feature extraction 

can be formulated as one of determining a mapping of the form y s f(x), or y = W^x, that 

transforms pattern vectors onto a lower dimensional feature space in which the correspond­

ing feature vectors are separable. The Fisher Linear Discriminant (FLD) was one of the first 

methods proposed to achieve dimensionality reduction, based on maximizing the ratio of in­

tercluster to intracluster distances. The FLD algorithm projects the data onto a lower dimen­

sional space where this criterion function is maximized. Consequently, FLD is a feature re­
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duction algorithm that ensures maximum separability of patterns in the transformed space. 

However, as discussed in the following paragraphs, dimensionality reduction may not always 

be very beneficial for increasing pattern separability. In tact, the drastic dimensionality re­

duction that FLD provides imposes rather stringent limitations on the data with respect to the 

number of patterns in the training database, number of classes, and the dimensionality of pat­

terns. 

4.4.3 Fisher's Linear Discriminant and Its Limitations 

FLD has enjoyed much attention and success largely as a technique for reducing the di­

mensionality of a classification problem by projecting the data instances onto a new space of 

lower dimension. 

Consider a multi-class classification problem and let C be the number of classes. For the 

/''' class, let {X, }be the set of patterns in this class, mi be the mean of vectors xe {X, }, m be 

the number of patterns in {X,}. Let m be the mean of all patterns in all C classes. Then the 

within scatter matrix Sw, and between scatter matrix SB are defmed as follows; 

.=i«x, (4 13) 
r 

Note that Sw is a measure of the intracluster distances, and SB is a measure of the intercluster 

distances. The transformation, which is also the projection from the original feature space 

onto a lower dimensional feature space, can be expressed as 

y  =  W - x  ( 4 . 1 4 )  



www.manaraa.com

97 

where the column vector y is the feature vector in the projected space corresponding to pat­

tern X. The optimum matrix W is obtained by maximizing the criterion function 

^(W) = S,Vs,vF (4.15) 

where Sgp and S,v^ are the corresponding scatter matrices in the (feature) projection space. It 

can be shown that S^f and 8,^^ can be written as [94] 

=W^SsW 
" (4.16) 

=W'S ,^W 

Therefore, the criterion function can be represented in terms of the scatter matrices of the 

original patterns. 

= (4.17, 

y(W) is a vector valued function, and the determinant of this function can be used as a 

scalar measure of J(W). The columns of W that maximize the determinant of /(W) are then 

the eigenvectors that correspond to the largest eigenvalues in the generalized eigenvalue 

equation [94] 

SgW, =yliS,yW, (4.18) 

For nonsingular Stv. Equation 4.18 can be written as 

Sw^'SgW. =ylw, (4.19) 

From Equation 4.19, we can directly compute the eigenvalues A, and the eigenvectors Wi, 

which then constitute the columns of the W matrix. 

The limitations of the 1^0 method can be explained with the help of two theorems, the 

proofs of which are straightforward consequences of linear algebra theory. 
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Theorem /. Regardless of the dimension of the original pattern, the FLD transforms a pat­

tern vector onto a feature vector, whose dimension can be at most C-I, where C is the num­

ber of classes. 

Proof: The rank of a matrix that is obtained by multiplying a vector by its transpose is al­

ways one. Also, note from Equation 4.13 that the between class scatter matrix SB is obtained 

by adding C rank 1 matrices, only C-I of which are linearly independent. The rank of SB can 

therefore be at most C-I. Consequently, only C-I eigenvalues can be non-zero, and W is then 

obtained by taking the eigenvectors wi that correspond to nonzero eigenvalues. If the original 

data is d dimensional, then the W matrix will be of size [d x C-I], and when applied to the 

original data, this projection will reduce the dimensionality to C-/. • 

In most signal processing and pattern recognition applications, the dimensionality of the 

original data is significantly larger than number of classes, and therefore FLD provides a sig­

nificant dimensionality reduction for these cases. However, not all applications possess this 

property, and for those applications, FLD cannot be used. In fact, the gas-sensing problem 

discussed later in this paper is an example of such an application. Furthermore, the dimension 

of the new space is predetermined by the number of classes, and cannot be changed. This 

means that, regardless of the dimensionality of the original data, the reduced dimension will 

always be C-I. In certain databases where C is in the order of 2-5 and where J is in the order 

of 100~1000, the reduced dimensionality with only C-I features may not be adequate to dis­

tinguish the classes. In other words, only a few features may not be able to provide the neces­

sary information to classify instances of such a database. 

Theorem 2. The matrix Sw is nonsingular only if N-C < d, where N is the number of training 

data and d is the dimension of the pattern vector. 
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Proof: The solution to the generalized eigenvalue problem of Equation 4.19 is based on the 

assumption of Sw being nonsingular. Note that the inside summation of Sw in Equation 4.13 

adds n, matrices, (//,-l) of which are linearly independent. Therefore, the rank of this inner 

sum can at most be («, -1). The outer sum of Sw adds C such matrices, where C is the number 

of classes. The summation of n, over / will give the total number of data instances, N, in the 

d a t a b a s e ,  a n d  t h e r e f o r e  t h e  r a n k  o f  S w c a n  b e  a t  m o s t  N - C .  O n  t h e  o t h e r  h a n d ,  i f  N  - C  < d ,  

Sw will be singular, where d is the dimensionality of the original patterns. ^ 

Again, in many signal processing and pattern recognition applications, the number of data 

instances, N, is much larger than the original dimensionality. However, there are quite a few 

areas of applications where this does not hold. For example, in the case of ultrasonic signals 

used in inspection of piping welds, signals of length a few hundred to a few thousand are 

very common, whereas the total number of signals may not be nearly as many. Similarly, in 

image processing, the number of pixels in a given image can be, and usually is, much larger 

than the total number of images available. In summary, although FLD is useful for dimen­

sionality reduction in data sets, it cannot always be used for increasing class separability, par­

t i c u l a r l y  i f  C  i s  s m a l l  o r  N  - C  < d .  

The next section describes the proposed nonlinear cluster transformation method, for ad­

dressing the problem of overlapping clusters. The quantitative measure of effectiveness of 

the method in achieving this goal is calculated using the same criterion function of the FLD 

algorithm. 
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4.4.4 Nonlinear Cluster Transformation (NCT) 

Nonlinear cluster transformation is a three-step supervised procedure that attempts to in­

crease the intercluster distances, while preserving intracluster distances and the dimensional­

ity of the pattern vectors. Minor reduction in the intracluster distances is achieved, however, 

by outlier removal. NCT has no limitations in terms of dimensionality, number of classes, or 

the total number of patterns in the database. 

In the first step, outliers are removed using a distance metric based on the Mahalanobis 

distance. In the second step, the desired cluster separation is obtained by a simple translation 

of each cluster along an optimal direction. This step, in essence, generates training data pairs 

for determining the NCT mapping function of the third step. In this last step, the data gener­

ated in step two is used to train a generalized regression neural network (GRNN) to approxi­

mate the tiinction mapping between original clusters and the translated clusters. The per­

formance of this algorithm is evaluated by computing the FLD criterion function in the pat­

tern space and feature space. The feature vectors are then input to a classifier of choice. The 

details of these steps are explained in the following paragraphs. 

4.4.4.1 Outlier Removal 

The patterns in each class i in the training database are first normalized according to 

where / is the A:''' element of the pattern x, and is the dimensionality of the patterns. 

X (4.20) X -
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Outlier removal is performed next, based on the Mahalanobis distances of patterns from 

the cluster centers. For each cluster /, the Mahalanobis distance of pattern x in class / is com­

puted as 

A/p =(x-m,f C,''(x-m,) xelxj (4.21) 

where C, is the covariance matrix of the pattern population of the class, and m, is the 

mean of this population. Md can be used as a measure of dispersion within the cluster. Note 

that the Mahalanobis distance is a better distance criterion then the Euclidean distance. The 

Euclidean distance simply measures distance from the cluster center, and therefore it cannot 

be used successfully to detect outliers that are close to the cluster centers. In contrast, Maha­

lanobis distance does not measure distances to cluster center, but rather distances to the clus­

ter itself as a whole, and therefore it is more suited for outlier detection. Note that outlier re­

moval also provides some intracluster distance reduction. 

4.4.4.2 Clutter Translation 

This step addresses the problem of closely packed and possibly overlapping clusters. The 

underlying idea is to translate the clusters appropriately in order to physically separate them. 

Conceptually, all clusters are thought of as like charged particles, and the magnitude and di­

rection of the translation vector are then derived using the concept of a repulsive force ex­

erted by each cluster i on all other clusters. The procedure is first explained for a two-class 

problem. The natural extension to the multi-class case is then derived. 

Consider a two-class problem with possibly overlapping clusters, whose centers are lo­

cated at mi and mj. The distance between these two clusters can be increased if the class I 

patterns are translated along a vector Si s -(mz-iiii), and class II patterns are translated along 



www.manaraa.com

102 

S2=-Si = -(ini-in2). This idea can be extended to multi-class problems of arbitrary dimen­

sionality, where patterns of class Ci can be translated along Si, where the optimal direction Si 

can be computed as 

Si ="2 (4-22) 

and where m, and my are the cluster centers of cluster / and cluster j, respectively, and C is 

the number of clusters. 

The resultant translation vector for cluster i is S, = -M,, where 

M . =  
r \ 

(4.23) -m,) 

and m, is the cluster center of the /''' cluster. 

All patterns in cluster / are moved along the direction of -Mi, and the translated patterns 

can be obtained by 

*5, = x, -t- (- M,/||M,!)• (list, (4.24) 

where Xi is a pattern from cluster /, dist^ = l/|m - m^l is a normalizing constant that controls 

the amount of translation, and is the new location of the pattern x,. This intuitive approach 

is shown in Figure 4.19. 

It is straightforward to show mathematically that these translation directions maximize 

intercluster distances. 
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Figure 4.19 An intuitive approach for increasing pattern separability 
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Theorem J. For a C class problem the sum of all intercluster distances defined as in Equa­

tion 4.25 is maximized if all clusters are translated along Si = -Mi, i=l,..,C, the opposite of 

the resultant of the vectors that pair wise connect the cluster centers. 

Proof; For a C class problem, we first define the overall intercluster distance D as the sum 

of all intercluster distances as shown in Equation 4.2S. 

D = = (4.25) 
i.y=l i.y=l 

After translation along Mi according to Equation 4.23, the new overall intercluster distance is 

D""" = 2;(m, + M, - m j'" (m, + M, - m,)+ - m, f (m„ - ) (4.26) 
/=i ijt=\ 

The vector M| that extremizes D"'" is obtained by setting the derivative of £)"*'" with respect 

to Ml to zero, and solving for Mi: 

BD" 
= £-(•". -'n,) = 0 

c (4.27) 

=7:Z("*y-'n.) 
^ ;=1 

since 

this value of Mi minimizes the overall intercluster distance. We therefore deduce that the op­

timal direction of translation, S„ to maximize the new overall intercluster distance must be 

the opposite of M„ that is, 

S. = -M, = y - ) (^-29) 
^ >=i 
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Note that S, points in the opposite direction of the resultant vector combining the center of 

cluster i to the centers of all other clusters, that is, it points away from all other clusters. # 

The cluster transformation described here can also be expressed in a matrix form. Let 

i=I,2,...,C. where C is the number of classes, n=I,2 M where M is the number of patterns 

in class /, X,,' be the n''' pattern of the /''' class, and Yn be the corresponding pattern after trans­

lation. Then, 

f\ • . r 3 1 3 
= -(/isf. • 

• m, -m, 

+ 

y ' v'.vi; l.Vulj J • • K l«,cl ICvll 

This equation is implemented on the training data sets to generate a second dataset that is 

used to train a GRNN to learn the overall transformation function. 

4.4.4.3 Function Mapping 

In order to translate each cluster away from each other, the cluster information is re­

quired, which is not available for test patterns. We therefore need to leam how to translate 

patterns without knowing the class information. This problem can be thought of as a function 

approximation problem, where the function to be approximated is a function that maps d di­

mensional original patterns to their new locations. A generalized regression neural network 

(GRNN) was used to accomplish this function approximation. GRNN, developed and shown 

to be a universal approximator by Specht [106], can be though of as a special case of radial 

basis function neural network (RBFNN). GRNNs do not require iterative training, and they 

can approximate any arbitrary multidimensional function defined between a set of input and 
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output vectors. Therefore, they have been used with significant success in multidimensional 

function approximation. GRNN is based on the theory of nonlinear regression analysis, com­

monly used as a statistical function estimation scheme. As shown below, GRNN is very 

similar to RBFNN, the only exception being the different procedure used to assign output 

layer weights. In fact, GRNN and RBFNN have identical architectures, as shown in Figure 

4.20. 

The niethod of nonlinear regression analysis estimates the expected value of y as [ 107] 

jy/(x..v)c/y 

E [ y \ x ]  =  ̂  (4.31) 

|/(x.y)i/y 

where y is the output of the estimator, x is the input vector for which the corresponding out­

put is to be estimated and f(\,y) is the joint probability density function of x and y. Specht 

showed that Equation 4.31 can be optimally approximated as 

=! 

N 

W ij 

yj='^ (4.32) 

1=1 

where 

/?.=e 2^ 

x-u|  

(4.33) 

... .u_ :_u. .1 .-ili is output of the i receptive field (hidden neuron), Wjj is the weight that connects the < hid­

den neuron to the /'* output neuron, (Tis a spread constant that controls the ranges of the re­

ceptive regions, and finally u are the training vectors and they are the centers of the receptive 

fields [107]. 
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(hidden layer nodes) 
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Figure 4.20 GRNN architecture 

As mentioned above the only difference between RBFNN and GRNN is the way the 

weights are determined. In GRNN, the weights Wjj are simply assigned as the target outputs 

of the network. For example, weights connecting the first hidden node to output nodes, w/j, 

are determined from the values of the target output corresponding to the first training vector. 

Note that the number of hidden layer nodes is therefore equal to the number of training vec­

tors that are available. GRNN is essentially a scheme for estimating the joint probability den­

sity function of input and output from a training dataset. It may be argued that GRNN simply 

menKirizes the training data vectors; however, by a suitable selection of the spread constant. 



www.manaraa.com

108 

a, it is able to generalize arbitrarily complex functions [107], It is also interesting to note that 

there is a very close relationship between GRNN and probabilistic neural networks (PNN), 

the former having an additional normalization at the output layer [107,108]. 

4.4.5 Experimental Resutts 

NCT has been tested on various databases, three of which are discussed in this section. 

The Hrst database is the double spiral database, which consists of two interleaved spirals, and 

the second database is an artificially generated two-dimensional multiciass database. The 

third database is the gas sensing database described previously. 

4.4.5.1 Double Spiral (DS) Database 

The DS database is a popular database used extensively for evaluating neural network ar­

chitectures. This database consists of two distinct spirals in the x-y plane, as shown in Figure 

4.21. The advantage of this database is that it has a two-dimensional feature space, thus al­

lowing easy visualization of patterns. The task of distinguishing these two spirals is known to 

be a difficult task for back-propagation networks and their relatives. 

The database was divided into a training dataset, Tds- ^d an evaluation dataset, Eds- The 

separation was obtained by putting every other instance into Tds and the remaining instances 

into Eds- The original database had 194 instances, and they were equally divided into training 

and evaluation datasets of 97 instances each. Figure 4.21(a) illustrates the Tds database, and 

Figure 4.21(b) shows the result of cluster translation on Tds- These patterns were then used to 

train a GRNN, which was evaluated on the Eds- Figure 4.22(a) and (b) illustrate the £d5 data-

set Isefore and after NCT operation. Note that the two spirals are now linearly separable and 

technically, they do not require a network to distinguish them from each other. 
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Figure 4.21 (a) TDS dataset Figure 4.22 (a) Eos dataset 

(b) TDS after translation (b) after NCT 

4.4.5.2 Synthetic Data 

A synthetic dataset with three overlapping classes in the 2-D feature space was generated 

for a more challenging test. Similar to the double spiral database, this database was divided 

into training {TSYNT) and evaluation (ESYNT) datasets. Figure 4.23 shows the training data with 

the corresponding translated targets computed using the equations given above. Two datasets 

shown in Figure 4.23 were used to train a GRNN to learn this nonlinear mapping. This ex­

ample shows the effect of the spread constant, (T, in the GRNN formulation. The generaliza­

tion capabilities of GRNN are shown in Figures 4.24 and 4.25 for various values of a A.« <r 

decreases, sharper Gaussians are used for approximations. This improves the accuracy and 

generalization of the GRNN only up to certain values of a, since further decreasing (T results 

in the network memorizing the training patterns with no generalization property. 
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Figure 4.23 (a) TsYNrdataset Figure 4.24 (a) ESYNT dataset 

(b) Tsynt after translation (target for GRNN) (b) Esynt after NCT, for o=0.05. 

Figure 4.25 (a) Esynt after NCT, for osO.Ol (b) Esynt after NCT, for osO.OOOl 
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4.4.5.3 VOC Mixture Databaw 

NCT was finally tested on the dominant V(X) identification problem. Recall that for the 

identification of the dominant VOC problem, there were five classes, namely, OC, ET, XL, 

TL and TCE. For the purposes of visualizing the data, and the effect of NCT, only three at­

tributes were used in the following figures. The computations, however, used all six attrib­

utes. As before, the database was partitioned into two parts, Tvoc for training and Evoc for 

evaluation. Each partition had 192 instances. Figure 4.26 illustrates Tvoc with its first three 

attributes, and the result of cluster translation on Tvoc- The training database Tvoc and its 

translated target vectors were used to train the GRNN to learn the NCT for this database. 

GRNN was then evaluated on Evoc- Figure 4.27(a) illustrates the evaluation database Evoc, 

and Figure 4.27(b) shows the output of the GRNN for this dataset. As we can see from Fig­

ure 4.27(b), the transformed patterns do not look quite as well separated (at least in 3-D) as 

0 

(a) 

20 

(b) 

Figure 4.26 Tvoc (a) before and (b) after transformation 
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Figure 4.27 Evoc (a) before and (b) after NCT 

the training data in Figure 4.26(b), due to the inherent difficulty of this dataset. However, the 

five clusters in Figure 4.27(b) are better separated (even to the human eye) after the NCT 

preprocessing, compared to unprocessed patterns of Figure 4.27(a). 

Very satisfactory results were obtained when this procedure was used as a preprocessing 

step for a subsequent classifier, such as a neural network. A three-layer MLP easily con­

verged to a small error minimum when trained with the NCT processed patterns. Repeating 

over twenty trials with various spread parameters, a correct classification performance of 

80%-95% were achieved over the entire Evoc dataset that the MLP had not seen before. 

Recall from our previous discussion that neither a similar architecture, nor a larger archi­

tecture of MLP or RBF was able to converge, prior to preprocessing of this database. FLD 

was also tried on this database, which was unable to project the data on to a 4-D space where 
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the patterns were more separable. It is interesting to note that the J(W) criterion function was 

evaluated before and after NCT for this Evoc, which showed an increase of seven orders of 

magnitude after NCT. This demonstrated the effect of NCT on the evaluation database in in­

creasing the intercluster distances. 

4.4.6 Conclusions and Future Work for NCT Analysis 

The main purpose of NCT is to increase the intercluster distances while keeping intra-

cluster distances constant. Preprocessing with NCT allowed improved performances of sub­

sequent classification algorithms, and in fact, it made training possible in the first place, for 

the VOC database. 

The following comments can be made for the advantages of NCT. Unlike FT-D, NCT has 

no limitation on the number of classes, dimensionality, or the number of instances. NCT can 

be applied to virtually any database of arbitrary dimensionality with arbitrary number of 

classes. Training for NCT is a single step procedure which does not require an iterative learn­

ing; therefore it is very fast. Although not guaranteed, NCT may provide minor dimensional­

ity reduction for certain databases through outlier removal. On the other hand, NCT has its 

own limitations. NCT will not work for a database that has two clusters with identical means. 

However, the distance between them can be arbitrarily small, as was the case in the double 

spiral database. Furthermore, the speed of the NCT comes at an expense of computational 

space complexity. NCT require considerably larger memory than iterative learning tech­

niques, particularly for databases with a large number of data instances. 

Future work for this algorithm includes an improved translation criterion that not only 

considers the distance between clusters, but also their variances. Such a scheme has the po­



www.manaraa.com

1 1 4  

tential to improve the overall performance of this scheme in two ways. First, it would allow 

us to determine the optimum amount of translation for patterns of different classes, and sec­

ond it would allow us to move patterns of the same class towards each other, hence providing 

reduction in the intracluster distances as well as increase in the intercluster distances. 

4.5 Conclusions on Enhancing Pattern Separability 

Three approaches for identifying VOCs in mixtures, in particular the dominant VOC, 

were presented in this chapter. The first approach made use of a ftizzy inference system to 

identify the dominant VOC and a neural network to identify the secondary VOC. The most 

important characteristic of this FIS was its selection of membership functions that made use 

of dynamic ranges of individual sensor responses, and the consequent design of its rule base. 

About 89% of all mixtures were classified with their correct dominant VOCs by FNOSE. 

which was followed by secondary VOC neural networks, one for each dominant class. The 

overall system had a classification performance of 83%. 

One main advantage of fiizzy inference systems over neural networks is that fiizzy sys­

tems are very intuitive and straightforward to design and very simple to interpret, in contrast 

to neural networks which are black boxes to the end user. This is due to their massively par­

allel and complicated inner structure. However, this massively parallel and complicated 

structure can be a very powerful classifier when trained with appropriately preprocessed pat­

terns. 

The second approach, proposed as an appropriate preprocessing scheme, was inspired by 

the scheme used in the selection of membership functions for FNOSE, and the histogram 

equalization scheme used in image processing. The outputs of all sensors were individually 
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transformed in an attempt to increase their dynamic range. The mapping functions were se­

lected based on the sorted histograms of sensor outputs, and these functions were then im­

plemented by RBF neural networks. When feature range stretching (FRS) scheme was ap­

plied to mixture signals, both the dominant VOC network and the secondary VOC networks 

correctly classified 96% of the patterns. The classification performance of the cascaded sys­

tem was 92%. The FRS preprocessing increases the intercluster distances of the signals to 

allow better separability of the data. However, it should be noted that this scheme also in­

creases the intracluster distances, which is undesirable. Another disadvantage of the FRS 

technique is that it requires a stretching function to be manually formulated for each feature 

in the pattern. This can be a tedious process for databases of high dimensionality. 

The third approach, preprocessing with nonlinear cluster translation, was therefore devel­

oped to address the issue of increasing the intercluster distances without changing the intra­

cluster distances. Based on translating the clusters away from each other and learning this 

mapping using a GRNN, this approach offers performance comparable or superior to the pre­

vious methods, but without the implementation problems. Note that the mapping of each fea­

ture is automated in this procedure, and hence it does not suffer from similar implementation 

issues that FRS does. The only parameter that needs to be determined by the user is the 

spread constant for the GRNN. 

It should be emphasized that despite its relatively poorer performance compared to FRS 

and NCT preprocessing schemes, the fuzzy inference system approach has proven viable in 

identification of the dominant VOCs, and therefore warrants detailed investigation for per­

formance improvement. It should be noted that FIS achieved its classification performance of 
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89% in the classification of the dominant VOCs without requiring any preprocessing, a 

noteworthy achievement unattained by any neural network tested to date. 
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CHAPTER 5 

OPTIMUM FEATURE SELECTION 

5.1 Introduction and Motivation: Knowing What Doesn't Matter 

As discussed in Chapter 3, piezoelectric chemical sensors, such as surface acoustic wave 

(SAW) devices and quartz crystal microbalances (QCMs) have been widely used for the de­

tection and identification of volatile organic compounds (VOCs), where an array of polymer 

coated sensors is generally used [39, 68, 69, 70, 76, 78, 109]. The change in the resonant fre­

quency of each sensor as a function of VOC concentration constitutes the response pattern. 

Over the past fifteen years, a significant amount of work has been done on developing pattern 

recognition algorithms, using principal component analysis, neural networks and fuzzy infer­

ence systems, for various gas sensing problems [3, 18, 19, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

33, 34, 35, 36]. However, these methods can only be successful, if the features (polymer 

coated sensor responses) used to identify the VOCs allow efficient separation of patterns in 

the feature space. The challenge is then to identify a subset of polymer coatings such that a 

classification algorithm provides optimum classification performance. Selection of coatings 

is usually based on various chemical properties (e.g., solubility parameters [44,45, 71]) of 

the VOCs and the compatibility of each with a range of compositionally different polymer 

coatings. 

Since there may be a large number of polymers suitable for the identification of a VOC, 

the selection of the smallest set giving the best performance is an ill-defined problem. This is 

because testing every possible combination is usually not feasible. Many researchers have 
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observed that using as nuiny sensors as possible does not necessarily improve the perform­

ance of a classification system. In fact. Park et al. [110,111] through a careftil analysis of the 

required number of sensors versus the number of analytes and Osboum et al. [112] through 

steadily increasing the sensor size, have shown that the performance of classifiers for VOC 

identification typically degrade, as the number of sensors increase beyond a certain number. 

Therefore, an efficient algorithm for optimum selection of sensors is of paramount impor­

tance. 

For small pools of potential coatings, an exhaustive search may be manageable. For ex­

ample, Zellers et al. [22] successfully conducted an exhaustive search of a ten-polymer data-

set that used extended disjoint principal components regression analysis to evaluate classifi­

cation performance. Using this strategy, four polymers were identified as requisite array ele­

ments for optimum identification of six VCXls [22, 110, 111]. The use of four polymers out 

of ten amounts to 210 possible combinations, which is manageable for an exhaustive search. 

However, as the number of possible coatings increases, using exhaustive search becomes 

computationally prohibitive. An addition of two more coatings, tor instance, to the pool re­

quires evaluating 495 possible four-coating combinations, and a more practical problem of 

choosing six coatings out of twenty coatings requires testing 38760 different combinations of 

coatings. 

In an effort to reduce the number of candidate coatings from a larger pool of potentially 

useful coatings, various feature extraction and dimensionality reduction algorithms have been 

developed. Principal component analysis (PCA), as described earlier in Chapter 4, has been 

one of the most popular of such techniques. Carey et al. [113] used PCA to reduce the feature 

vector obtained from 27 sensors to less than 8 for an identification problem consisting of 14 
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VOCs. Avila et al. [114] introduced correspondence analysis as an alternative to PCA and 

showed that it had computational advantages as well as performance improvement over PCA 

on the same dataset used by Carey et al. 

In PCA the strategy is to find a set of n orthogonal vectors along which the m dimen­

sional data has the largest variance such that n<m. PCA is, therefore, a dimensionality reduc­

tion procedure, rather than a feature selection procedure. The principal components are com­

puted as the projection of the data onto a set of orthogonal vectors that are the eigenvectors 

of the covariance matrix of the data. The covariance matrix may, and frequently does, con­

tain significant information obtained from each sensor. Consequently, PCA does not reduce 

the number of sensors, nor does it identify the optimum set of coatings. Recently, Osboum et 

al. and Ricco et al. [98,99] pointed out the limitations of PCA for feature selection as well as 

for identification and introduced Visual Empirical Region of Influence Pattern Recognition 

(VERI-PR) for identification of VOCs, which was discussed in Section 4.1 of Chapter 4. The 

authors state that VERI does not suffer from various shortcomings present in other tech­

niques. For example, VERI does not require or assume any specific probability distributions 

to be known, and it does not require a large number of parameters to be adjusted by the user. 

Furthermore, VERI is a versatile algorithm not only capable of pattern recognition, but also 

of optimum feature selection. The optimal feature selection capabilities of VERI on a VOC 

identification problem have been reported to be very promising [100]. However, the feature 

selection module is based on an exhaustive search, called leave-one-out, and therefore the 

authors recommend its use for pools of less than 20 coatings. Despite the drawbacks of PCA 

and development of new algorithms, PCA and related techniques are still being used in fea­

ture extraction for gas sensing applications [IIS, 116, 117]. 
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Selection of optimum coatings for gas sensing is an example of the more general problem 

of choosing an optimum subset of features, which is commonly encountered in pattern analy­

sis, machine learning and artificial intelligence [94, 118]. It is interesting to note that in many 

pattern recognition and classification applications incomplete or inadequate data sets are usu­

ally blamed for poor performance. In the context of gas sensing, an inadequate data set often 

refers to having an insufficient number of sensors because it is usually believed that increas­

ing the number of sensors would offer better separability. In fact, the assumption that increas­

ing the number of features also improves classification performance is a misconception. This 

situation would only be true if the number of responses were increased drastically with the 

number of features. It nnay in fact be rather surprising that poor perfornvmce might some­

times be due to too much irrelevant information. Many studies have shown that most classi­

fication algorithms perform best when the feature space includes only the most relevant in­

formation that is required for identification [119, 120, 121]. 

While having relevant features is a key to the successful performance of any classifica­

tion algorithm, the definition of a relevant feature has been extensively debated. Some stud­

ies suggest algorithms that are preprocessing in nature. These preprocessing algorithms filter 

the data, and eliminate irrelevant features. Statistical measures, such as properties of the 

probability distribution function of the data, are employed for designing the appropriate filter, 

and therefore, these algorithms are referred to as filter approaches [122, 123, 124]. 

Etemad and Chellappa's work [125, 126] on feature selection is one of the recent studies 

that fall into this category. They used wavelet packets [127] to extract useful features. Multi 

resolution wavelet analysis has been used for data compression (dimensionality reduction) 

with significant success due to its capability for extracting localized spectral information. In 
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this work, the authors have used wavelet packets along with a variety of quantitative meas­

ures of separability criteria to obtain a minimally optimum set of features. Such criteria in­

clude Bayes risk, and within and between-class scatter matrices (see Equation 4.16). At each 

decomposition level, they have computed these measures and discarded the features that did 

not contribute significantly to these measures. 

The main disadvantage of filtering schemes is that they completely ignore the learning 

algorithm to be used with the selected features, and selection is solely based on data. Some 

researchers suggest that set of relevant features for any data should be dependent on the clas­

sification algorithm [ 118, 120, 128, 129]. For example, a good set of features for a neural 

network may not be as effective for decision trees. Such schemes in which the feature selec­

tion algorithm is based on or wrapped around the classification algorithm are referred to as 

wrapper approaches [129]. Most algorithms in this class employ a heuristic search algorithm 

to find the minimum set of optimum features: therefore, they suffer from prohibitively large 

computational time and space complexity problems due to the additional overhead of 

evaluating the classification performance on each feature subset. Various remedies have been 

proposed to speed up the search criterion. For example, using a random selection of attributes 

resembling the simulated annealing algorithms [130], or genetic algorithms [128] instead of 

an organized search have been investigated. Other researchers have tried training a neural 

network and then pruning the node corresponding to non-contributing inputs [131], or using 

statistical measures to start the search from a point closer to the final target (see Section 5.5 

in this chapter). 

Due to the limited number of possible coatings typically used in the gas sensing area, the 

computational complexity of wrapper approaches does not constitute a major drawback. We 
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have therefore analyzed two techniques based on the wrapper approach, and we report the 

performances of these two artificial intelligence (AI) approaches for selecting the optimum 

set of coatings for VOC identification. The first approach is based on Quinlan's ID3 (Iterative 

Dichotomizer 3) algorithm [119], a decision tree algorithm that integrates classification and 

feature selection. The second approach is a modified version of the wrapper model of Kohavi 

et at. [129], which uses a hill-climb search algorithm to search the feature space for an opti­

mum set of features. The original wrapper model combines the hill climb search with ID3. In 

this work, the hill-climb search has been integrated with a multilayer perceptron (MLP) neu­

ral network. To accelerate the convergence of the hill-climb search, basic statistical indica­

tors have also been incorporated to find a different starting point that would give the search a 

jump-start. This scheme significantly reduced the computational complexity of the search. 

We emphasize that our goal was to develop a systematic and efficient procedure for de­

termining the optimum coatings. The analytes and coatings used in this study were selected 

from those that have been reported extensively in the literature. 

5.2 Experimental Setup and Data Handling 

The experimental setup used for this study was identical to that described in Chapter 3. 

Figure 3.4 illustrates this setup. However, an anay of twelve crystals was used to detect and 

identify twelve VOCs, as opposed to an array of six crystals used for the mixture VCXT ex­

periment. The polymers used as coatings were as follows: 

APZ: Apiezon, PIB: Polyisobutelene, DEGA: Poly(diethyleneglycoladipate), 

SG: Solgel, OV275: Poly(ethyleneglycoladipate), PDS: PolydimethylsUoxane 

PDPP: Poly(diphenoxylphosphorazene), PCP: Polychloroprene, 
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PDS-CO: Polydimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane-graft-poly-

(ethylene glycol)3-aminopropylether, 

PDS-OH: Polydimelhylsiloxane, hydroxy terminated, PSB: polystyrene beads, 

GRAP: graphite. 

The twelve VOCs used were similar to those described in Chapter 3, namely, acetone 

(AC), methylethylketone (MEK), ethanol (ET), methanol (ME), dicholoroethane (DCA), ace-

tonitrile (ACN), trichloroethane (TCA), trichloroethylene (TCE), hexane (HX), octane (OC), 

toluene (TL) and xylene (XL). These VOCs were exposed to the sensor array at seven differ­

ent concentration levels, namely at 70, 140, 210, 250, 300, 350 and 700 parts per million 

(ppm), giving 84 responses, constituting the experimental database used in this study. These 

responses were considered as signature patterns of their respective VOCs, and thus they were 

used as representatives of the corresponding VOCs. 

The responses of the sensors to the given VOCs were eminently linear with the concen­

tration of these VOCs in the given concentration range. Therefore, the available data with 

responses to twelve VOCs at seven concentrations were interpolated and extrapolated to in­

clude fifteen concentrations using regression analysis. Linear regression coefficients with 

r">0.998 were obtained for every sensor. The augmented data set allowed us to obtain esti­

mated frequency responses of the sensors at the following concentrations 70, 100, 150, 200. 

250, 300, 350, 400, 450,500, 600, 700, 800,900, 1000, and 1500 ppm, giving 12*15=180 

data instances. This data, however, was not used for any of the training algorithms, but it was 

simply used for testing neural network performances. The rationale for generating such a data 

set to test the performance of the neural networks on an expanded data set was to measure its 

performance under noisy conditions. Since this data set is artificially generated, the estimated 
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frequency responses can be considered as approximations to what the actual responses should 

be. Therefore, such a database can be viewed as a candidate for a noisy database. 

It has also been realized that the change in frequency is linearly dependent on the thick­

ness of the coatings: the thicker the coating, the higher the frequency response. However, no 

attempt has been made to date to normalize the data with respect to the coating thickness in 

order to test the generalization capabilities of the neural network classifiers. 

In the following sections, the frequency response patterns of the QCM array to various 

VOCs are referred to as feature vectors. The response of each individual sensor coated with a 

different polymer constitutes the individual features. We therefore use the terms feature and 

sensor response interchangeably. Furthermore, we will use the abbreviations of the coating 

names to refer to individual features where necessary. 

5.3 Method I: IDS/C4.5/C5.0 Family of Decision Trees 

5.3.1 Generating Decision Trees 

Decision trees are compact forms of displaying a list of IF-THEN rules in a hierarchically 

ordered fashion of a tree structure. These rules are used to make classification decision about 

the input pattern. Decision trees are one of the most commonly used machine learning algo­

rithms for classification applications, ID3 being one of the most popular among all [118]. In 

fact, ID3 (and its improved descendants, C4.S, C5.0) has become the basis of a general class 

of decision tree algorithms, referred to as ID3 based algorithms. IDS is mainly a classifica­

tion algorithm that classifies test data (validation data) by constructing a decision tree from 

training data [119]. The algorithm determines the features necessary for correct classification 

of training data. The decision tree starts with what ID3 identifies as the most important fea­
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ture based on the information content of each feature. Given a training data set, 7, the prob­

ability that a certain pattern belongs to a given class, C„ is given as 

p ̂  frequency (C,,7) 

where frequency (C„D is the number of patterns in the training set T that belong to class C„ 

and 171 is the total number of patterns in the training data set. The information provided by 

Equation S. 1 is defined as 

I = -log. 
^ freq(C,,T)^ 

(5.2) 
irl 

and measured in units of bits. Note that, by deflnition of probability, P must be between and 

zero and I, the logarithm of which is always negative. The minus sign in Equation 5.2 as­

sures that information is defmed as a positive quantity. 

The average amount of information, info (7), needed to identify the class of any pattern, 

in training set T is then defmed as the sum over all classes weighted by their frequency of 

occurrence, or by their probability: 

S R .  F .  N 
info(r) = -^ 

t=i 

freqiC,,T) 

Irl 
xlog. 

freq{C,,T) 

|7-| 
bits (5.3) 

The information needed to identify the class of any pattern after the training data set has 

been partitioned into K subsets based on the value of some feature X is given by 

K If. I 
info X (7) = Sy X 'nfo(T/) (5.4) 

1=11' I 

where 17/1 is the number of patterns in the partition /. Equation 5.3 is generally referred to as 

the entropy before partitioning, and Equation 5.4 as the entropy after partitioning of the train­
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ing set r. The original ID3 algorithm uses gain as the criterion to determine the additional 

information obtained by partitioning T using the feature X. Thus 

gain(X) = info(7')-info,(r) (5.5) 

ID3 first selects the feature that has the largest gain and places that feature at the root of 

the tree. This feature is then removed from the feature set, and the feature that has the largest 

gain among the rest becomes the second important feature and so forth. This criterion, how­

ever, has a very strong bias in favor of features that have many outcomes, that is, features 

whose values partition the data set into most number of classes. Although this may seem a 

logical bias, it will cause the classifier to produce poor performance if an irrelevant feature 

uniquely identifies all classes. An example of such a database is a medical database in which 

a diagnosis (classification) for each patient (pattern) is made based on the results of a certain 

number of tests (features). Such databases often include a patient identification number, and 

this number uniquely matches the diagnosis for that patient. Obviously, the identification 

number is not actually useful for the diagnosis, but because it uniquely identifies each pa­

tient's diagnosis, the gain criterion of IDS will choose this feature as the root, and will termi­

nate the tree. 

The second generation of ID3, named C4.5, overcomes this potential problem by defining 

splitjnfo of a feature: 

^|7:I r 
split_info () = X M ^ 'og 2 1^:0 (5.6) 

,MJ 
where splitjnfo defines the potential amount of information that is generated by dividing T 

into K partitions by the feature X. Then 
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gain_ratio(X) = (5.7) 
split_info(X) 

defines the proportion of useful information generated by the split of T. If the number of par­

titions, K, generated by the feature X is excessively large, split_info(X) will also be large, 

making the gain_ratio(X) small. C4.5 uses gain_ratio as the criterion for choosing the fea­

tures. 

Details of this procedure, as well as examples, can be found in Quinlan's reference book 

on C4.5 [132]. C4.5, and more recently C5.0, the newest version of the ID3 family of deci­

sion trees, add a number of new features to the algorithm, such as cross-validation and boost­

ing, as described later in this section. A sample decision tree generated by C5.0 for this par­

ticular problem of determining optimum coatings is shown in Figure S. 1. 

The decision tree given by CS.O can easily be converted into a set of rules, and a classifi­

cation can be made from these rules. For example, the first rule generated by the tree in Fig­

ure 5.1 can be expressed as " IF PIB response is less than 0.19947, AND the response of 

PSB is less than 0.057534, THEN the VOC is ethanol (ET)". The number in parenthesis (7.0) 

refers to the number of patterns that were classified correctly with this rule. In this case, all 

seven responses (to seven concentrations) of ethanol were successfully classified by this rule. 

If applicable, a second number following a slash sign is given corresponding to the number 

of misclassiflcation cases. Also note that these numbers are given in floating point format, 

implying that they may also be non-integers. 
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PIB <- 0.19947: 
• • .PSB <- 0.057534: ET (7.0) 

PSB > 0.057534: 
:...PDS > 0.058451: 

:...(IRAP <> 0.48869: ACN (7.0) 
ORAP > 0.48869: HE (7.0) 

PDS <- 0.058451: 
:...APZ <• 0.063905: AC (7.0) 

APZ > 0.063905: 
:...SO <« 0.061274: DCA (5.0) 

SO > 0.061274: MEK (7.0) 
PZB > 0.19947: 
:.. .OV275 <> 0.049858: 

:...PIB > 0.75788: OC (7.0) 
PZB <> 0.75788: 

: :...PDS <• 0.07377: TCB (7.0) 
: PDS > 0.07377: HX (7.0) 
OV275 > 0.049858: 
:...PSB <• 0.89462: XL (7.0) 

PSB > 0.89462: 
:...DEaA > 0.20139: DCA (2.0) 

DEGA <> 0.20139: 
:...PCP > 0.2028: TL (3.0) 

PCP <• 0.2028: 
:...PDS <> 0.062143: TL (5 

o
 • 

O
 • 

PDS > 0.062143: TCA (6 .0) 

Figure 5.1 Sample decision tree generated by C5.0 

Non-integer number of cases can appear if a value of a feature is not known (missing 

data), or if there is overlap among the patterns in the pattern space described by selected fea­

tures. In such cases the algorithm may split the classification of a pattern into more than one 

rule, and assigns a fraction of a number as the number of correct classification by each rule. 

This decision tree algorithm was tested on the original (experimentally obtained) data set 

consisting of responses of 12 sensors to 12 VOCs. A number of trees were constructed using 

various options of CS.O. These options, such as pruning, cross-validation, boosting, etc. were 

the additions to the original ID3 algorithm as new versions such as C4.S and CS.O were de­

veloped. 
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Pruning is a procedure for removing the redundancy from the generated decision tree. 

Pruning usually results in much simpler trees, using a significantly smaller number of fea­

tures than the original tree. The features that are used in the final tree are considered as the 

most important features that by themselves are adequate to classify the entire data set. Cross-

validation Is used to optimize the generated tree by evaluating the tree on a test data set. This 

is achieved by partitioning the entire database (training and testing) into M blocks, where 

each block is internally divided into a training sub-block and a testing sub-block. The testing 

sub-block is also called the holdout set. During this partitioning, number of patterns and class 

distributions are made as uniform as possible. M trees are generated from these M blocks of 

data, and the average error rate over the M holdout sets is considered to be a good predictor 

of the error rate of the tree built from the entire data. Finally, boosting is also a procedure of 

generating multiple trees, where the misclassified test signals of the previous tree are moved 

to the training data set. Please see Chapter 6 for more information on boosting. 

5.3.2 Results Using Decision Trees 

Among the many trees generated using these various options, none was able to perform 

to our satisfaction. Although trees were able to reduce the number of features from 12 to 

around 5-7, the correct classification performance using these features was in the range of 

63% to 83%. Previous studies have shown, however, contrary to its intention, this algorithm 

is most beneficial when the features selected in its decision tree are actually used to train a 

neural network [133]. That is, this algorithm appears to be a good feature selection algorithm 

rather than a classification algorithm, although it was originally designed as a classification 

scheme. 
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PIB <> 0.16172: 
:...PDS <• 0.058451: 
:  I . . . APZ <> 0.063905: AC (7.1) 

: APZ > 0.063905: HEX (7.3/1.4) 
: PDS > 0.058451: 
: :...PDS <• 0.10796: ACN (7.1) 

PDS > 0.10796: ME (8.1/3.7) 
PIB > 0.16172: 
:...OV275 > 0.19642: DCA (12.6) 

OV275 <• 0.19642: 
:...PSB <• 0.89462: XL (8.3/3.1) 

PSB > 0.89462: 
:...OV27S <• 0.049858: 

:...PDS <• 0.07377: TCE (5.2) 
: PDS > 0.07377: HX (4.7/0.6) 
OV275 > 0.049858: 
:...PDS <• 0.054348: TL (3.7) 

PDS > 0.054348: TCA (10.8/2.7) 

Figure 5.2 Decision tree generated by CS.O 

One of the better trees, constructed using boosting, pruning, and cross validation options, 

is the five-feature tree shown in Figure 5.2. As seen from Figure 5.2, this tree used features 

(coatings) APZ, PIB, OV275, PSB, and PDS. These features were used to train a neural net­

work. A multilayer perceptron (MLP) neural network with the 5x25x12 architecture was 

used. The responses of five sensors constituted the input layer. There were 25 hidden layer 

nodes and 12 output nodes, each output representing one of the 12 VOCs. The training data 

were obtained by randomly selecting 30 patterns from the database of 84 patterns. The results 

are summarized in Table 5.1. 

The Train column indicates the number of signals used in the training data for each 

VCXT, and the Perf (performance) column indicates the number of correctly classified pat­

terns for each VOC out of seven that were in the original database. With four misclassified 

signals giving a test data classification performance of (54-4)/54=93%, this neural network 

performed significantly better than the best decision tree used as a classifier. The same neural 
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network was then tested on the expanded (synthetic) data set, and the resuhs are shown in 

Table 5.2. With eight misclassifications, the network that was trained with patterns of the 

original (experimentally obtained) database, had a correct classification performance of (180-

8)/180 = 96 % on the expanded data set. 

This classification performance of the neural network, and consequently that of the fea­

ture selection capability of the decision tree method, must be evaluated with some skepti­

cism. Recall that the feature subset containing five features was the best of over 40 different 

feature subsets suggested by C5.0 at various attempts. A number of different parameters were 

tweaked in order to obtain this feature set. Therefore, this algorithm may not be the most ef­

ficient one to use, particularly for novice users who are not very familiar with the decision 

tree algorithms. 

Table 5.1 Results of the neural network trained with the features suggested by CS.O 

•M 
AC 2 6/7 TCA 2 7/7 

MEK 1 6/7 TCE 3 7/7 

ET 4 6/7 HX 4 7/7 

ME 2 7/7 OC 2 7/7 

ACN 2 6/7 TL 3 7/7 

DCA 3 7/7 XL 2 7/7 
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Table 5.2 Results on the expanded data set (15 concentrations) 

Dl 
AC 14/15 TCA 13/15 

MEK 14/15 TCE 15/15 

ET 10/15 HX 15/15 

ME 15/15 OC 14/15 

ACN 14/15 TL 13/15 

DCA 12/15 XL 13/15 

5.4 Method II: Modified Wrapper Approach 

The decision tree based approach for the selection of optimum features is a very fast al­

gorithm. since it takes very little time for a decision tree to converge to a solution. However, 

it is difficult to use, since it requires many parameters to be adjusted as explained later in this 

section. This makes decision tree based techniques less than appealing to users who are not 

closely familiar with the algorithm. Furthermore, since a decision tree does not give satisfac­

tory performance as a classifier, a separate classification algorithm, such as a neural network, 

needs to be used for the actual classification. Recall, however that the features chosen by the 

decision tree are the optimum kanwxfi for decision tree classification and may not always be 

optimum for neural network classification. Most importantly, the decision tree does not allow 

the user to choose the number of features to be selected. Pre-specifying a number K for the 

number of features, and being able to ask the algorithm to find the best K features that would 

optimize the performance anwng all other K feature subsets is a very desirable property. 

These concerns motivate the search for an alternate method for feature subset selection. 
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Recently developed wrapper approaches [129, 134] have been successfully used as fea­

ture selection algorithms, where the features are selected based on the performance of the 

subsequent classification algorithm. Thus, the features selected are optimum for a particular 

classification algorithm. Wrapper approaches also allow us to specify the number of features 

we would like to select, and there are relatively fewer parameters to choose than in decision 

trees, making this approach easily accessible to inexperienced users. These benefits, how­

ever, come at the cost of computational complexity. In the next subsection, we briefly de­

scribe the wrapper approach, followed by the results obtained using this approach. 

5.4.1 Strong and Weak Relevance 

Kohavi and John [129,134] expanded the meaning of relevance in feature selection by 

defining strong relevance and weak relevance as follows: Let X/ be a feature, S, =fXi X,.i, 

X i^ i , . . .  X„,}  be the set of all features except X„ and let Xi and i-, be the value assignments to X, 

and 5„ respectively. Then, the feature Xi is strongly relevant if. and only if, there exists some 

Xi, y, and JT, such that for P(X, = x,, S, = 5,) > 0 

P(y = y I X, = Xi Sj =Si)* P{y = y I 5/ = ) (5.8) 

where K is a random variable representing class information, and y is a class assignment of 

the pattern jr. A feature Xi is weakly relevant, if it is not strongly relevant, and there exists a 

subset of features 5,' of 5, for which there exists some Xi, y, and Si' with nonzero probability, 

PiX, = Xj, 5, '= J,') > 0, such that 

PiY = y\ Xi = Xi/i =Si'):^P{Y = y\ 5,-'= 5,") (5.9) 

According to the above definitions, a feature is strongly relevant if removing this feature 

results in performance degradation of an optimal Bayes classifier. A feature, X, is then 
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weakly relevant, if it is not strongly relevant, and there exists a subset of features, S', which 

does not Include X, such that the performance of Bayes classifier on S' is worse than the per­

formance on su{x}. 

Kohavi and John's approach, originally developed to improve the classification accuracy 

of C4.5, simply searches feature space in an organized manner. The algorithm is based on 

testing all feature subsets within a limited search space using C4.S until there is no further 

improvement in classification performance. The feature subset selection algorithm works to­

gether with, or is "wrapped around", its intended classifier. 

The best method for finding the optimum feature subset is to search the feature space ex­

haustively for every possible feature combination. The problem is, however, such a search 

algorithm can be computationally prohibitive. Becau.se of this problem, only a subset of the 

feature space must be searched in an organized manner by exploiting any additional informa­

tion that is available. The search can start, for instance, using all features and progress by re­

moving features that do not contribute notably to the classification performance (backward 

search). Alternatively, the search can begin with no features and proceed by adding features 

that contribute the most to classification performance (forward search). 

We adopted the forward search approach, where we started the search with zero features. 

The performance was then evaluated for each feature. Once the feature that gave the best per­

formance was identified, only one feature was added to the search at each iteration. These 

two-feature subsets were then evaluated by the classifier at each iteration, and the best two-

feature subset was determined. A third feature was then added to those two features, and this 

procedure was continued until adding new features did not improve performance. Kohavi et 
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al. suggested that this method could fmd all strongly relevant features as well as some 

weakly relevant features [129]. 

The method described above is known as the hill-climb search algorithm where a subset 

of feature space is searched until the best performance is found. The problem with this search 

scheme is that it may get trapped at a local performance maximum and never locate the best 

feature subset. Frequently, however, even a sub-optimal selection of features can render ade­

quate separation of the data. 

Minor modifications were made to the original wrapper approach that would reduce the 

possibility of sub-optimal search results. We used the classification performance of an MLP 

neural network as the evaluation function. MLPs are generally capable of solving more diffi­

cult classification problems compared to decision trees, due to their massively parallel non­

linear structure, thus improving the performance of a possibly sub-optimal feature set. Fur­

ther modifications are discussed in Section 5.5. 

It should be noted that an organized search of a subset of the feature space is essential, 

since searching the entire feature space would be computationally prohibitive for datasets 

with large number of features. For example, searching for the best feature subset from a set 

of 12 features requires evaluating (that is, training and testing) 

1 J +C 
/^12> 

+ c  
/'I2^ 

T> 
+ -- -+C = 4095 different networks, where C| — IS 

Ui; U2J u; 

the number of possible combinations of choosing k features from a set of n. The maximum 

number of subsets searched using hill-climb search, on the other hand, ']sN{N -1))/2, 

where N is the number of features. For 12 features, there would be only 66 subsets to search. 

Figure 5.3 shows the complete search space for ^ = 4, where each node has a binary code 
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indicating the features that are included and the ones that are not. For instance, the feature 

subset [0 1 10] includes the second and third but not the first and fourth features. Note that 

each node is connected to nodes that have only one feature added or deleted. Moving from 

one node to the next is referred to as expanding. The hill-climb search algorithm is given in 

Figure 5.4. 

Figure 5.3 Compkte feature space for N=4 

Figure S.5 illustrates the application of this algorithm to the 12-dimensional feature 

space. Note that at each stage, the number of possible combinations that need to be evaluated 

decreases by one. Therefore the total number of feature subsets that must be evaluated is 

N -i-iN + l) + iN + 2)+-" + {N-{N. 
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Algorithm Hill-climb search 

1. Let 5 be the initial feature subset, typically (0,0,...,0,0) 

2. Expand S: Find all children of S by adding or removing one feature at a time. 

3. Apply the evaJuation function,/, to each child, s 

4. Let s„„Lx be the child with the highest evaluation f ( s ) .  

5. Iff(s„,a.x} > f(S), then S ^ s„,at, return 5 to step 2, else 

6. Return 5 as solution. 

Figure 5.4 The hill-climb search algorithm 

(I,(1.(1.(1,0,(1.(1,0.(1.0,(1.0 

1,(1.0.0.0,0.0.().(»,0.0,0 

12 combinations 
to test 

im^ C$4jj>,0,0,0,0,0 

2'"' tcaturc Rives ^11 combinations 
hffit pt'rformancc^,,,----' J ' to test 

:0,1,0,0,0,0,0,0^0^ 

2""'and 12"' rcaturf> I 10 combinations 
uive l)cst Dcrforniitnce ^ 

(^^0,0,0,0,0,(^0^}) 

r'. 2'"' and 12"'' features 
i;i\e IK'*)! perforntance , 

. 1 ,(t,o.o.o,o,o,o.o.o.oXo, 1.1.0,0,((.0,0, 

Search continues until the best feature in the current row is not 
better than that of the previous row. 

Figure 5.5 Hill climb search for the feature space with 12 features. Evaluation function 

is the performance of the T x 25 X12 MLP neural network, where T is the number of 

features in current feature space. 
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5.4.2 Results Using Wrapper Approach 

Since our feature space was manageably small, all subsets in the hill-climb search space 

were examined, thus effectively eliminating the local performance maximum problem for 

this dataset. For each feature subset, a new MLP was trained with the experimentally gener­

ated training data set consisting of 30 patterns; the network was then tested on the remaining 

54 patterns. The classification performance of the MLP was used as the evaluation function. 

The network architecture was T \ 25 \ 12, where T was the number of features in the current 

feature subset that was being evaluated. The same training and testing data sets were used for 

each and every network. On a 166 MHz machine with 32 MB RAM, the program took about 

5 hours to complete, and on a 266 MHz machine with 64 MB RAM, the program converged 

in about 3.5 hours. 

The feature subset that had the best performance with the least number of features on the 

model neural network architecture (4x25x12 with 30 training data, 54 testing data) was PIE, 

OV275, SG and PDPP. Although another subset with an additional feature had slightly 

higher performance, the four-feature subset was preferred because of its smaller dimension. 

To avoid a rapid growth in adding features, a subroutine was added to the algorithm to penal­

ize marginally when adding an additional feature. It is interesting to note that PIB, OV275, 

and PDPP were also on the most successtlil coatings list of Zeller et al. [22], which was ob­

tained through an exhaustive search. 

The classification performance of this set with the blindly chosen training data was 

around 92%. A new training data of 30 patterns was randomly selected from the entire data­

base, making sure that every class was represented at least once. The network with the same 

architecture (4x25x6) was initialized and trained with the new training data set, and tested 



www.manaraa.com

139 

with the remaining 54 patterns. This feature subset classified all patterns correctly. The dis­

tribution of the training data and the performance are given in Table S.3. This network was 

also tested with the expanded data set, and all but three of the patterns (all ethanol) of the to­

tal 180 patterns were classified correctly, giving a classification performance of 98.3%. 

Table 5.3 Performance of the best feature subset as chosen by hill*climb 

•Di Hi 
AC 2 7/7 TCA 2 7/7 

MEK 1 7/7 TCE 2 7/7 

ET 2 7/7 HX 3 7/7 

ME 3 7/7 OC 4 7/7 

ACN 2 7/7 TL 4 7/7 

DCA 3 7/7 XL 2 7/7 

5.5 Improving Wrapper Approach 

Hill-climb has a couple of drawbacks that are addressed in this section. First, the hill-

climb search technique is not necessarily a robust search technique. It is prone to being 

trapped in a local maximum in the performance space. Furthermore, when starting with one 

feature, the initial steps are more likely to result in the network not converging, since only 

one (or few) features will not be sufficient for convergence to the desired error minimum. 

Second, this search has a very high time complexity since it requires training and evaluation 

of a number of MLPs. However, it is interesting to note that the time required for evaluating 

a feature subset with a given number of features decreases as the number of features in­

creases. In other words, finding the best subset with one feature takes more time than finding 
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the best subset with six features, given that the best five features are Icnown from previous 

iterations. 

When the total number of features is large, a more effective approach is to intelligently 

identity a few of the best possible features and then start the hill climbing approach from that 

point. This approach not only reduces the training time considerably, but it also prevents the 

convergence problems during the initial stages. Furthermore, knowing the first few critical 

features increases performance by avoiding any initial missteps starting the hill climb. We 

note that if no prior information is known about the data and/or importance of the possible 

features, statistical procedures can be used to determine features that are likely to be carrying 

important information. 

One such procedure is using the variance of the features among different classes. Intui­

tively, features whose values change when the class changes carry more information than 

features whose values do not change with class. In addition, if the value of a particular fea­

ture is constant regardless of the class, then that feature provides no discriminatory informa­

tion; therefore, it is of no use. On the other hand, this approach has a major flaw. If a particu­

lar feature changes in each case, then the variance of this feature would be very high, but it 

would not be useful for classification. A typical case is the medical database example given 

earlier. Care must therefore be taken when selecting the feature that has the maximum vari­

ance among different classes, but minimum variance among the patterns of the same class. 

Such a feature is a good candidate as the best feature for that classification problem. A good 

normalization scheme is also necessary for this approach to work. 
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When applied to the gas sensing database, the features that had the highest variance 

among different classes were PIB and OV275. These were also identified as the best features 

by the hiU-climb search. However, computing their variances took much less time than using 

the hill-climb approach. For completeness, the following is the list of the features, in de­

scending order of their variances: 

1. PIB 7. DEGA 

2. OV275 8. PCP 

3. GRAP 9. PDSCO 

4. PSB 10. PDS 

5. PDPP 11. SG 

6. APZ 12. PDSOH 

It should be noted that SG, which was chosen by the hill-climb search, was at the bottom 

of the list. The obvious question that comes to mind, therefore, is how this approach alone 

would perform if the features were chosen from the top of this list. To answer this question, 

the top four coatings from this list were chosen and the standard network was trained again 

with 30 cases. The distribution of the training data and the results of this network are shown 

in Table 5.4. 

With 1S misclassifications, these results prove that features should not be chosen on the 

basis of their variance only. However, choosing a few features with the highest variance, and 

using them as initial features in the hill-climb search may provide the best of two worlds by 

reducing the total processing time of the search algorithm. 
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Table 5.4 The performance of the coatings chosen based on their variance 

6/7 TCA AC 5/7 

5/7 TCE MEK 1/7 

7/7 HX 7/7 ET 

6/7 OC ME 6/7 

ACN 6/7 TL 5/7 

DCA 7/7 XL 7/7 

5.6 Conclusions 

Two feature selection methods for the VOC identification problem were examined. The 

first approach, using a decision tree to determine the features carrying the most information 

and then training a neural network with these features performed well on both databases. The 

correct classification performance was 93% on the original experimentally generated data set, 

and 96% on the expanded data set. One major drawback of this scheme is the number of pa­

rameters that need to be optimized for various options of the decision tree-generating algo­

rithm (e.g., pruning, cross-validation, boosting, etc). On the other side, decision trees are 

much faster to train than neural networks. 

The second approach based on a hill-climb search of the feature space performed very 

well; the network trained with the four features selected classified all signals correctly. This 

approach, unfortunately, can be computationally prohibitive if the number of features ex­

ceeds a certain limit. One simple solution of using statistical characteristics of features has 

been proposed for reducing the amount of time required by this approach. For VOC identifi­
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cation problems, hill climb can be safely used since the number of sensors used rarely ex­

ceeds twenty. 

Note that the hill-climb approach does allow the user to prespecify the number of features 

desired. In addition, this approach requires fewer parameters to be optimized; however, the 

network architecture needs to be determined by the user. 



www.manaraa.com

144 

CHAPTER 6 

INCREMENTAL LEARNING 

6.1 Motivation 

The performance of a classification algorithm relics heavily on the availability of a com­

prehensive training dataset that is representative of all patterns that the classifier is likely to 

encounter. However, acquiring such a training dataset is typically expensive and time 

consuming, and in some cases, it may not even be feasible. When large volumes of data need 

to be collected, it is often more practical to acquire the dataset in batches. In such cases, the 

classification algorithm is expected to process small batches of data in an incremental mode. 

Ideally, such an algorithm should also be able to leam new information, adapt to evolution in 

knowledge as well as reinforce existing knowledge. 

Learning from new data without losing prior knowledge is defined as incremental learn­

ing. Most existing classification algorithms do not allow incremental learning of new data. 

When new data become available, these algorithms have traditionally been re-initialized and 

retrained from scratch using a combination of old and new data, resulting in a loss of all pre­

vious training. This phenomenon is known as catastrophic forgetting, and it is prevalent in 

many automated signal classification algorithms, including the multilayer perceptron, radial 

basis function, probabilistic, wavelet, and Kohonen neural networks. Furthermore, if the old 

data is not available when new data arrive, incremental learning is impossible for such algo­

rithms. Therefore, the development of a general approach for incremental learning of new 

data is of significant importance and a subject of active research interest. 
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Although recent years have witnessed an increasing need for incremental learning for 

automated classification systems, incremental learning has not been formally defined in the 

literature. Consequently, several versions of this problem have been addressed in the litera­

ture with varying degrees of complexity [135]. At one end of the spectrum, incremental 

learning is trivialized by allowing retraining with old data, without adding new classes. At 

the other end, an incremental learning algorithm is expected to learn in an on-line setting, 

where the learning is carried out on an instance-by-instance basis with some instances intro­

ducing new classes. Algorithms that are currently available for incremental learning typically 

fall somewhere in the middle of this spectrum. In this dissertation, an algorithm is considered 

as a truly incremental learning algorithm, if it does not forget what has been previously 

learned. Therefore, an incremental learning algorithm should not require access to old data. 

Given this requirement, several scenarios in signal cla.ssification can be constructed: 

1. New data without new classes, with no access to previous datasets 

2. New data with possibly new classes, with no access to previous datasets 

i. New data including instances from all previous classes, as well as the new 

class 

ii. New data including instances from only some of the previous classes, as well 

as the new class 

iii. New data including instances only from the new class. 

3. New data with or without new classes, with the learner having access to some statisti­

cal information regarding the previous data, such as mean, variance, covariance ma­

trix, etc. 
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Developing one algorithm that can handle all the issues listed above may not be feasible. 

However, a base approach may be able to address all of these cases with minor modifica­

tions. 

As the primary original contribution of this research, Leam-H-, an incremental learning 

algorithm is introduced in this chapter. Learn -H- allows learning firom new data, which may 

possibly include instances from previously unseen classes, without requiring access to old 

data. Before describing Leam-H- in detail, related work on incremental learning by other re­

searchers is discussed fu'st. 

6.2 Literature Survey: An Incremental Work on Incremental Learning 

A word of caution is in order before discussing earlier work on incremental learning. This 

is because the phrase "incremental leaming" has been used rather loosely with widely differ­

ing meanings in the pattern recognition and artificial leaming literature. A number of papers 

refer to growing and pruning of classifier architecture as incremental leaming. Notable ex­

amples include growing neural network architectures one node at a time [136, 137, 138]. 

Another group of algorithms that claim incremental leaming are those that modify the 

weights of a neural network architecture by retraining, typically with misclassified signals. 

Although, these schemes are closer in meaning to the definition of incremental leaming as 

defined in this study, they violate the major requirement since they forget previous leaming 

and require access to old data. 

For example, Vo [139] describes an incremental leaming algorithm for time delay neural 

networks (ITDNN), which supplements the original TDNN architecture with the capability of 

leaming a misclassified pattem in a single epoch by adding a dedicated hidden layer unit. In 
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order to correctly classify a misclassified sample, the algorithm first tries to adjust the 

weights and biases without affecting the overall performance simply by reintroducing the of­

fending instance to the network. If this cannot be done, which is typically the case, the algo­

rithm adds an extra hidden unit to perform template matching on the incorrectly classified 

instance. The activation pattern of the offending instance at the first hidden layer constitutes 

the template, and the weights for the additional unit are chosen such that the patterns close to 

this instance produce a high activation at the extra node, whereas those patterns that are not 

similar to the template pattern are deactivated at the hidden unit. Each hidden unit is con­

nected to only one output node, representing the correct class for those instances that are 

similar to the misclassified instance. This procedure is repeated for all misclassified patterns 

that do not fit into one of the previously generated templates. 

Hoya and Constantinides [ 140] describe an incremental learning scheme for GRNNs and 

related family of networks such as PNN and exact RBF networks. Since exact RBF networks 

and GRNNs are based on look-up tables, which store the entire training database, a misclassi­

fied test sample is simply added to the training dataset, and hence to the lookup table, which 

then gets correctly classified. Since GRNNs do not need iterative training, this algorithm can 

be implemented in an on-line learning setting. 

It should be noted that both of these algorithms do not conform to the description of in­

cremental learning given above, since they do not learn new patterns but rather previously 

misclassified patterns. 

Higgins and Goodman [141] have suggested incremental learning with a rule based net­

work, which actually has the same fundamental idea of the work described in [ 140]. The al­

gorithm involves "growing" a network incrementally using the new data without requiring 
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old ones. According to this algorithm, each training instance is considered a parent rule, and 

any rule that is obtained by removing one feature from a parent rule is considered a child 

rule. Best rules are first identified by computing the information content of each rule with 

respect to the training data. For each rule, the information content of all child rules are also 

computed, and if the information content of the child rule is higher than that of the parent 

rule, the parent rule is replaced by the child rule with the largest information content. This 

scheme serves as the feature extraction module for the algorithm. Once the best set of rules is 

determined, a neural network is constructed from these rules. The input layer nodes of this 

network correspond to attributes (features) of the rules, the hidden layer constructs the ante­

cedents of the rules as conjunction of attributes, and the output layer nodes correspond to 

class attributes. The network is not fully interconnected since not all attributes are used in all 

rules. This network is then trained using a gradient descent algorithm, such as backpropaga-

tion, in an online mode (one instance at a time). Each new rule adds one hidden layer node to 

the network, if not classified correctly by the existing network. It should be noted that this 

scheme is essentially a lookup table, since all rules are actually memorized in the hidden 

layer nodes. 

Yamauchi and Ishii [142, 143] describe incremental learning with retrieving interfered 

patterns (ILRl), which partially satisfies our description of incremental learning. ILRI is ca­

pable of learning new patterns by modifying the weights of an RBF network through gradient 

descent. However, the instances that are misclassified (interfered patterns) after the weight 

update are put into the training dataset of the new database, hence incremental learning by 

retrieving interfered patterns. The authors do suggest, however, removing the requirement of 
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storing misclassifled old data by "approximately regenerating a pseudo instance" from the 

basis function at the hidden layer node that corresponds to the misclassified instance. 

In 1992, Ramani [144] proposed a different solution to the incremental learning problem. 

His solution was capable of learning not only new data, but new classes as well. He first 

made the following assumption; in a properly trained network, the transfer function from the 

input layer to the hidden layer as coded by the weights should only depend on the structure of 

the problem, and not only on the training samples used. Therefore, he postulated that this 

transfer function should hold even if a new class is added to the classification problem. A 

consequence of this postulation is that the weights for the first layer, once properly trained 

for a c class problem, should not necessarily change for a c+/ class problem. The only 

change, he claimed, should come from the second layer weights. Therefore, he initially 

trained an MLP with a c class dataset, and then kept the first layer weights constant during 

training with a c+/ class dataset corresponding to the same classification problem. The .sec­

ond layer was trained only with additional class instances, where the training data for second 

layer consisted of activation of the hidden layer nodes (due to new data and old first layer 

weights) and the corresponding class information for the new class. One node was added to 

the output layer during training with new data to accommodate the class. 

As a twist of history, the very same week (and quite possibly the very same day) in 1992, 

at the very same conference where Ramani introduced his second layer only incremental 

training algorithm. Carpenter and Grossberg unveiled Fuzzy ARTMAP, which arguably be­

came one of the most popular learning paradigms after the multilayer perceptron [145, 146]. 

Among all algorithms discussed in this section, Fuzzy ARTMAP is the only algorithm that 

can be considered as a truly incremental learning algorithm since it is capable of learning 



www.manaraa.com

150 

from new data and new classes in the absence of old data. Fuzzy ARTMAP is based on map­

ping two unsupervised clustering procedures implemented by two fuzzy ART modules, 

ARTa and ARTb. During unsupervised training, ARTa receives input patterns whereas ARTb 

receives correct class information. ARTa then generates a new cluster, corresponding to an 

instance, if and only if, the existing clusters activated by ARTa for the new instance cannot 

be mapped to correct class identified by ARTb. Essentially, ARTMAP generates new clusters 

(prototypes) for all possibly dissimilar looking patterns, where the measure of dissimilarity is 

controlled by a vigilance parameter. The number of clusters generated by ARTa is typically 

much larger than the total number of classes. Each one of these clusters is then mapped to 

one of the clusters generated by ARTb, the number of which is equal to the number of total 

classes. Fuzzy ARTMAP training continues until all training patterns are correctly classified, 

and therefore the error on training data is always zero. Fuzzy ARTMAP fits into the incre­

mental learning scheme perfectly because it continually generates new clusters as new data 

become available (if new data look dissimilar to previously seen data). One disadvantage of 

Fuzzy ARTMAP, as reported by a number of researchers, is that it is very sensitive to the 

order of presentation of the training data. Fuzzy ARTMAP is also extremely sensitive to the 

selection of the vigilance parameter, and finding the correct value for the vigilance parame­

ters can be quite difficult. 

In 1993, Chen and Soo [147] introduced an incremental feed-forward neural network 

(IFFN). They first describe adaptive learning, which involves learning of one additional in­

stance given a previously trained network. They update the weights for the additional in­

stance in such a way that the influence of the weight update on previously trained instances is 

minimum, which is satisfied by minimizing a weight-sensitivity cost function. Considering 
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incremental learning as a continuous adaptive learning, the authors apply the same scheme to 

the incremental learning of a new stream of data on an instance-by-instance basis. However, 

the weight-sensitivity cost function requires that previous training instances of the partially 

trained network be known, which prevents the algorithm firom learning in a truly incremental 

nature. In order to remove this shortcoming, the authors proposed generating pseudo-training 

instances from the responses of the partially learned network since the hidden layer nodes of 

the network realized Gaussian type radial basis functions. 

Between 1994 and 1996, Fu et al. [148, 149, 150] introduced an incremental backpropa-

gation learning network that is capable of learning new data in the absence of old data. How­

ever this system, also based on learning new instances through minor modification of current 

weights by putting a bound on weight modification, is not able to learn new classes. In their 

algorithm, first the weights are modified to learn the new instance, within the limits of a 

weight modification bound. If this could not be achieved, a new neuron was added to the 

hidden layer. Furthermore, a weight decay factor was also incorporated into the output con­

nection of each new node so that the neurons that were not being reinforced would get de­

leted. 

In 1998, Tontini introduced a slight modification of fiizzy ARTMAP to reduce the sensi­

tivity of the ARTMAP to the order of presentation of the input patterns by replacing the 

ARTa module with an RBF network [151]. 

Within the past year, incremental learning has become even more popular. A few new 

approaches were proposed in 1999. Bruzzone et al. introduced another merger of formerly 

known classifiers. They used Isodata to generate new clusters as new data become available, 

followed by an RBF to combine the clusters through a set of weights to minimize the sum of 
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square error at the output [152]. Yet another merger of formerly known methods came from 

Hebert et al. [ 153] where they combined a self-organizing map (SOM) and an MLP to obtain 

self organizing perceptron (SOP). The idea was to overcome the main drawback of the MLP 

as a classifier which can only generate unbounded regions, so that the input data located near 

each other in the feature space tend to activate the same group of neurons in the MLP's hid­

den layer. To do this, the authors trained a SOM and a MLP in parallel, and then combined 

the output of SOM with the hidden layer outputs of the MLP to control the output layer 

weights as dictated by the SOM. This system also does not allow incremental learning of new 

classes. 

Vailaya and Jain followed a different route for incremental learning in Bayesian classifi­

cation of images [154]. They used a Bayesian classifier as their base classifier. The class con­

ditional probabilities were obtained form linear combination of Gaussians centered at q 

codebook vectors which themselves were extracted by a vector quantizer using the n training 

instances (q<n). Given the prior probabilities of the classes, the maximum a posteriori prob­

abilities were then computed to determine the Bayes classification (the maximum likely class 

given the data instance). Incremental learning was obtained through updating the codebook 

vectors, adding new ones according to the new data, if necessary. 

Finally, Vijakumar et al. recently proposed a substantially different approach for incre­

mental learning based on reproducible kernel Hilbert spaces [155]. Their scheme is closely 

related to another recent scheme, namely, support vector machines [91, 92]. The scheme is 

very elegant in its theory; however, it requires significant expertise in kernel methods. The 

procedure first requires the selection of an optimal search space // in the Hilbert space in 

which all functions to be learned must reside. For the selected H space, reproducing kernel is 



www.manaraa.com

153 

generated by constructing orthonormal bases in the selected space. A correlation operator, 

which is a measure of the a priori information on the distribution in the function space. Is 

then estimated. This a priori knowledge is analogous to the Bayesian prior used in Bayesian 

estimators. The correlation operator is then used recursively to learn a new function from the 

previous one and the current sample. Naturally, this algorithm is geared towards the more 

general problem of function approximation. However, the nature of the function to be ap­

proximated must be a priori known for selecting a suitable H space [155]. 

Although most of the algorithms described above offer novel approaches, their true per­

formance is yet unclear since the algorithms have been tested on only one (or two) dataset(s), 

with respect to which the algorithms have been optimized. The only exception to this is 

probably the Fuzzy ARTMAP, which has been used and tested in numerous research efforts, 

including this one. Fuzzy ARTMAP has been tested for the VOC database, as described in 

the results section, where its performance is compared to that of Leam-H-. 

Furthermore, most of the above algorithms employ a specific classification algorithm or a 

network structure as a base classifier, and none of them provides a general solution to make 

any classifier an incremental learning algorithm. Also, in most cases claims of incremental 

learning were not tested nor documented (except ARTMAP). 

Leam-H-, the incremental learning algorithm that is introduced in this chapter, is an intui­

tive algorithm which is very simple to use, and it can theoretically convert any classifier into 

an incremental learning algorithm (though it has only been tested on MLPs so far). 
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6.3 Ensemble of Classifiers and Learn-t-f 

Leam-H- is inspired by Schapire's adaptive boosting (AdaBoost) algorithm, originally 

proposed for improving the accuracy of weak learning algorithms. In "Strength of weak 

learning" [156], Schapire showed that for a two class problem, a weak learner that almost 

always achieves high errors can be converted into a strong learner (also known as probably 

approximately correct - PAC learner) that almost always achieves arbitrarily low errors using 

a procedure called boosting. Both Leam-H- and AdaBoost are based on generating an ensem­

ble of weak classifiers, which are trained using various distributions of the training data and 

then combining the outputs (classification rules) of these classifiers through a majority voting 

scheme. In the context of machine learning, a classification rule generated by a classifier is 

referred to as a hypothesis; hence, they will be used interchangeably throughout the rest of 

this chapter. 

Independently, Littlestone et al. developed the weighted majority algorithm, which as­

signs weights to different hypotheses based on an error criterion. Weighted hypotheses are 

then used to construct a compound hypothesis which was proved to perform better than any 

of the individual hypotheses [157]. They also showed that the error of the compound hy­

pothesis is closely linked to the error bound of the best hypothesis. Schapire and Freund later 

developed AdaBoost.M 1 extending boosting to multi-class learning problems and regression 

type problems [158, 159, 160]. Schapire etal. have continually improved their work on 

boosting with statistical theoretical analysis of the effectiveness of voting methods [161]. Re­

cently, they have introduced an improved boosting algorithm that assigns confidences to pre­

dictions of Quinlan's decision tree algorithm. Their new boosting algorithm can also handle 
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multi-class / multi-label databases, where each instance may belong to more than one class 

[162]. 

Independent of Schapire and Freund, Breiman developed an algorithm very similar to 

boosting in nature. Breiman's bagging, short for bootstrap aggregating, is based on con­

structing ensembles of classifiers through continually retraining a base classifier with boot­

strap replicates of the training database [ 163]. In other words, given a training dataset S of m 

samples, a new training dataset S' is obtained by uniformly drawing m samples with re­

placement from 5. This is in contrast to Adafioost where each training sample is given a 

weight based on the classification performance of the previous classifier. 

Both boosting and bagging require weak classifiers as their base classification algorithms 

because both procedures take advantage of the so-called instability of the weak classifier. 

This instability causes the classifiers to construct sufficiently different decision surfaces for 

minor modifications in their training datasets. Both bagging and boosting have been used for 

constructing strong classifiers from weak classifiers, and they have been compared and tested 

against each other by several authors [164, 165]. 

The idea of generating an ensemble of classifiers is not new. A number of other research­

ers have also investigated the properties of combined classifiers. In fact, it was Wolpert who 

introduced the idea of combining hierarchical levels of classifiers, using a procedure called 

stacked generalization [166]. Kitler et al. analyzed error sensitivities of various voting and 

combination schemes [167], whereas Rangarajan et al. investigated the capacity of voting 

systems [ 168]. Ji and Ma proposed an alternative approach to AdaBoost for combining clas­

sifiers. Their approach generates simple perceptrons of random parameters and then com­

bines the perceptron outputs using majority voting [169]. It should be noted that the idea of 
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generating an ensemble of classifiers through randomizing the internal parameters of a base 

classifier (rather than modifying its training set) was previously introduced by Ali and Paz-

zani [170, 171]. Obtaining time and space efficiency, as well as good performance levels 

were the main motivations of their approach. Ji and Ma also gave an excellent review of 

various methods for combining classifiers in [172]. Dietterich reviewed ensemble of classifi­

ers with comparison to other types of learners, such as reinforcement learners and stochastic 

learners [173]. 

However, the steady increase in research efforts on combining classifiers has been mostly 

limited to improving the performance of classifiers. Leam-h- has emerged as a result of in­

vestigating the feasibility of ensemble of classifiers for incremental learning. 

Due to the strong connection between AdaBoost and Leam-h-, the former is described 

briefly in Section 6.5, immediately following the terminology and the background given in 

Section 6.4. The connection between using ensemble of classifiers and incremental learning 

is described in Section 6.6, followed by a detailed description of Leam-h- in Section 6.7. 

Unlike AdaBoost, which was designed to improve the performance of a classifier, 

Leam-h- is designed to give supervised classification algorithms (in particular neural net­

works) incremental learning capability. Furthermore, Leam-h- inherits all "performance im­

provement" capabilities of AdaBoost, and hence it can be used to improve the classification 

performance of a classifier as well. A theorem on the training error bound of Leam-h- is 

given in Section 6.8, demonstrating its performance improvement capabilities. Section 6.9 

presents the simulation results on various synthetic and real world benchmark databases as 

well as on the VOC identification database. Fuzzy ARTMAP performance on the same VOC 

database is also discussed in this section. 
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In Section 6.10, two variations of Leam-h- are introduced. These two new versions of 

Leam-h- make use of Mahalanobis distances between instances and previously used training 

datasets to dynamically assign weights to the hypotheses to be combined. Leam-h- using 

Mahalanobis distances for combining hypotheses requires that mean and covariance matrices 

of previously used training dataset be available which typically take up much less space than 

the original data. In Section 6.11, results obtained using these versions of Leam-h- are pre­

sented for the VOC database, as well as those for an equally challenging, but significantly 

larger database of A-scans obtained from submarine hull weld inspections. 

An interesting property of Leam-h- is then described in Section 6.12. This property al­

lows the algorithm to predict the reliability of its own classification decision. Reliability 

analysis results are also given in this section. Conclusions and discussion are presented in 

Section 6.13 along with directions for tuture work. 

6.4 Strong and Weak Learning 

Consider an instance space X, a concept class 6={c: it {0,1}}, a hypothesis space 

30=i(h:X^[0A\}, and an arbitrary (not necessarily known, not even necessarily computable) 

probability distribution ID over the instance space X. In this setup, c is the true concept that 

we wish to leam, A is the approximation of the learner to the true concept c. Although the fol­

lowing definitions are for a two-class concept, they can be naturally generalized to the n-

class concept. We assume that we have access to an oracle, which obtains a sample xe X, 

according to the distribution S), labels it according to c, and outputs <it,c(<t)>. Both training 

and testing are performed using the examples provided by the oracle. 
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Definition PAC (Strong) learning: A concept class 6 defined over an instance space X 

is said to be potentially PAC (probably approximately correct) leamable using the hypothe­

sis class M (which may or may not be the same as C) if for all target concepts c€ C, a consis­

tent learner £ is guaranteed to output a hypothesis FTE M with error less than E>0 and prob­

ability at least (1-5), 6>0, after processing a finite number of examples, m, obtained accord­

ing to ID . The learner jC is then called a PAC learning algorithm, or a strong learner [174, 

175]. 

Note that PAC learning imposes very stringent requirements on the learner £, since £ is 

required to learn all concepts within a concept class with arbitrarily low error e>0 (approxi­

mately correct) and with an arbitrarily high probability (1-8), 6>0 (probably correct). Such a 

learner that satisfies these requirements may not be realizable, and hence such a learner is 

only a potentially PAC learning algorithm. However, finding a learner £o that can learn with 

fixed values of £, (say £o) and S, (say 5o) might be quite conceivable. 

Definition Weak teaming: A concept class 6 defmed over an instance space X is weakly 

leamable using the hypothesis class M, if there exists a learning algorithm £o ^d constants 

EO<I/2, and So<l such that for every concept ce C and for every distribution S) on the instance 

space X, the algorithm £o, given access to an example set drawn from (c, S>), returns a hy­

pothesis Ae 31 with probability at least 1-So and €vioHe,'j)(h)< £o [174, 175]. 

Note that unlike strong learning, weak learning imposes the least possible stringent con­

ditions, since it is required to perform only slightly better than chance (for a two class prob­

lem), and only some of the time. We then ask the following question: If we have access to a 

weak learner of mediocre performance, can we convert it into a strong learner of good per­
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formance? Surprisingly, the answer is a very enthusiastic yes in the strongest sense. Despite 

the significant difference in the performance requirements of the two learners, Shapire 

showed that weak learning and strong learning are equivalent, and devised boosting to con­

vert a weak learner into a strong learner [158]. 

6.5 Boosting the Accuracy of a Weak Learner 

Boosting is based on running the weak learning algorithm a number of times to obtain 

many weak hypotheses, and using a majority vote to determine the final hypothesis whose 

error is less than any one of the individual weak hypotheses. For the generation of each addi­

tional hypothesis, the learner is presented with a different distribution of the training data, 

and it is forced to learn increasingly difficult examples. 

6.5.1 Boosting for Two-class Problems 

Let c be a Boolean target concept and S)\=fD, where 2) is the original di.stribution of the 

training data. We run the weak learning algorithm £q with training examples fi-om S)\ and 

obtain the weak hypothesis A| such that Attention is then focused on 

examples misclassified by Ai. A new set of training examples is obtained from a new distri­

bution !D2 as follows: An oracle flips a fair coin; on heads, it returns an example 

<x, c(<c)> such that h\ ^c(a:). On tails the oracle returns an example <ac, c(a;)> such that 

Therefore, the new distribution iD2 picks up correctly classified examples with prob­

ability Vi and picks up misclassified examples with probability V2. Now let Hz be the new hy­

pothesis returned by the learner £0 on Sh- This hypothesis will also have an 
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&vioH,,32((i2)=£2<ti<V2. The next hypothesis A3 is then returned by £0 in which A| andA2 dis­

agree. A3 will then have &iM>k.3t3(ii3)=£i<Bi<V2. Then the final hypothesis A is chosen from 

the majority voting of the three hypotheses. Shapire showed that bounded by 

3e"-2£^, which is less than e. That is, with each iteration, the error of the final hypothesis de­

creases and can potentially converge to an arbitrarily low value of error. Furthermore, he 

showed that it only takes polynomial time for the error to reach arbitrarily low values, and 

gave an upper bound on the number of training examples required to reach these low error 

levels [156, 175]. 

6.5.2 Boosting for Multiclass Problems: AdaBoost.M1 

AdaBoost is based on the belief that a large number of solvers, each solving a simple 

problem, can be used to solve a very complicated problem when the solutions to simple prob­

lems are combined in an appropriate form. 

AdaBoost.Ml [ 159, 160], Schapire and Freund's first extension to the original boosting 

algorithm, was developed to boost the performance of a multi-class weak learning classifier 

by generating various weak classification hypotheses and combining them through weighted 

majority voting of the classes predicted by the individual hypotheses. These hypotheses are 

obtained by retraining the classifier using a different subset of the training dataset, chosen 

strategically based on the performance of the previous hypothesis. In general terms, each in­

stance in the training database is assigned a weight, and these weights are updated based on 

the performance of the previous hypothesis. Misclassified instances are assigned larger 

weights, whereas correctly classified instances are assigned smaller weights. The training 

dataset for the next hypothesis is then chosen based on the current weights of the instances. 
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Instances with higher weights have higher chances of being selected into the next training 

set. Furthermore, the weights are normalized to satisfy the conditions to form a probability 

distribution Unction, referred to as the distribution !D of the training dataset. Consistently 

misclassilied instances are considered as hard examples of the dataset, and the algorithm is 

designed to train subsequent classifiers with increasingly harder instances of the dataset. 

Inputs to AdaBoost.Ml are 

• sequence of labeled examples (training data, 5) drawn randomly from an un­

known distribution S), 

• weak learning algorithm, WeakLearn, and 

• an integer T that specifies the number of hypotheses (iterations) to be generated 

by WeakLearn. 

The algorithm AdaBoost.Ml, which is given in Figure 6.1, proceeds as follows: In itera­

tion t=l,2 T, AdaBoost.Ml provides the weak learning algorithm, WeakLearn, with a 

training subset data drawn according to distribution Dt from the original training data 

S=[{xi,yi),(,x2, y2),...,(Xm,>'„,)], where X, are training data instances and y, are the correspond­

ing correct labels. WeakLearn then computes a hypothesis (classifier) h,: X Y, which cor­

rectly classifies a percentage of the training set. That is, WeakLeam's goal is to find a hy­

pothesis hi, which minimizes the training error 

The initial distribution Di is typically chosen to be uniform over 5, unless there is prior 

knowledge to choose otherwise, that is, D/(0 = I/m, Vi. This gives equal probability to all 

instances in 5 to be drawn into the initial training data subset. The distribution is updated by 

(6.1) 
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Z, [I , otherwise 

where 2, = ̂  D,{i) is a nonnalization constant chosen to ensure that D,+/ will be a distribu-
i 

tion, and fi, = f, /(l 

The parameter can be thought of as a normalized error term, since for 0<f,<'/2, 0<p<l. 

In fact, Schapire et ai showed that 

= 0^ 

is the optimum choice for the parameter ft [160]. 

The distribution update rule in Equation 6.2 ensures that weights for misclassifled in­

stances are increased, whereas weights for correctly classified instances are reduced. Thus, 

AdaBoost.M I focuses on examples that seem to be hardest for WeakLearn to learn. At the 

end of r iterations, AdaBoost.M 1 combines the weak hypotheses /i/,...,/ir into a single final 

hypothesis hf;„ui by computing the weighted majority of the weak hypotheses as 

hfinal M = arg miw ^ log(l/yff,) (6.4) 
f:/i, (.!)=>• 

where weight of hypothesis h, is defined to be log (i/yOJ) so that greater weight is given to a 

hypothesis with lower error. For a given instance .r. Equation (6.4) outputs the label y, that 

maximizes the sum of the weights of the weak hypotheses predicting that label. 

It should be noted that AdaBoost.M 1 requires e,, the error of each hypothesis /t„ to be less 

than Vz. For a binary class problem, this is the least restrictive requirement one could have, 

since an error of V2 for a binary class problem is equivalent to random guessing. Note that 
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Algorithm AdaBoostMl 

Input; 

Sequence of m examples 5=[(.v,,y,),(.r3,yO 

with labels y, e Y = {1,...,C} drawn from a distribution 5), 

• Weak learning algorithm WeakLearn, 

• Integer T specifying number of iterations. 

Initialize D/(/) = —. V/. 

Dofor r = 1,2 T. 

1. Call WeaicLearn, providing it with the distribution D,. 

2. Get back a hypothesis It, Y 

3. Calculate the error of/j,: e, = 

where Z, = ^D,{i) is a normalization constant chosen so that 
I 

Di^i becomes a distribution function 

Output the final hypothesis: 

ni 

i ll, ( r, )* V, 

If £, > '/z, then set r = t -I and abort loop. 

4. Set/?, = £•,/(1-£}). 

5. Update distribution D,: 

D,0) • if = 

Z, 11 , otherwise 

,:/.,TTt= v A (:/!,(«)=>• 

Figure 6.1 AdaBoost.Ml 
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any hypothesis with an error larger than 'A can be negated to obtain an alternate hypothesis 

with an error less than '/i. However, obtaining a maximum error of V2 becomes increasingly 

difficult as the number of classes increases, since for a k class problem the error for random 

guessing is (k-l)A. Therefore, the choice of a weak learning algorithm with a classification 

performance of at least 50% may not be very easy. 

Any classification algorithm can be substituted as a weak learner by modifying appropri­

ate parameters. For example, a MLP with a larger number of nodes/layers and a smaller error 

goal is, in general, a stronger learner than the one with smaller number of nodes and a higher 

error goal. It should be noted that the use of strong learners that achieve high classification 

performance on a particular training data are not recommended for use with boosting since 

there is little to be gained from their combination, and/or they may lead to over fitting of the 

data [160,169]. One of the nice properties of the AdaBoost.Ml algorithm is that it is less 

likely to encounter over fitting problems since only a portion of the instance space is learned 

by individual hypotheses. In addition, an ensemble of weak learners performs at least as well 

as a strong learner, but in considerably less time, since strong learners spend most of the 

training time during fine-tuning at lower error rates. A conceptual representation of combin­

ing classifiers is illustrated in Figure 6.2. In this figure, the dark curve is the decision bound­

ary to be learned. Individual classifiers (hypotheses) are illustrated with simple geometric 

figures, and each decides whether a point in the feature space is within or outside the deci­

sion boundary. Each simple shaped region of different shade represents the region learned by 

a weak learner. 
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Figure 6.2 Conceptual representation of combining classifiers 

Schapire and Freund have also developed AdaBoost.M2 for weak classifiers that are un­

able to obtain the 50% minimum performance requirement, as well as AdaBoost.R for boost­

ing regression type learning problems [160]. 

6.6 Connection to Incremental Learning 

In order to achieve incremental learning we assume that the new dataset S,,,,,. belongs to a 

slightly or significantly different portion of the original data distribution (data space) 2). In 

boosting, classifiers are added to learn regions of the pattern space that include increasingly 

"difficult" instances. Since, S„ew is likely to be misclassified by the learner, instances of 5„,h 

can be considered to come fi'om a "difficult to classify" region of the data distribution S). 

Figure 6.3 conceptually illustrates the procedure of combining simple classifiers, similar to 
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Figure 6.2, but this time in the context of incremental learning. The dark curve is the decision 

boundary to be learned and the two sides of the dashed line represent the two training data 5/ 

and 52. Individual classifiers (hypotheses) are illustrated with simple geometric figures, 

where hi through ha are generated due to training with 5/ and hs through hs are generated 

due to training with 52- Each hypothesis decides whether a data point is within or outside the 

decision boundary, where simple shapes represent the region learned by a weak learner. Note 

that this setup is identical to that used by AdaBoost.Ml, and hence Adaboost.Mi can be used 

for incremental learning of new data, with the understanding that new data corresponds to 

"harder" examples of the distribution. 

Figure 6.3 Conceptual representation of combining classifiers for incremental learning 
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However, the distribution update rule given in Equation 6.2 does not allow efficient in­

cremental learning, particularly when new data include new classes. This is because the dis­

tribution update rule for D,^./ depends on the classification performance of />,, a single hy­

pothesis. 

To understand the shortcoming of this distribution update scheme with respect to incre­

mental learning, consider Thypotheses, fn, hj, hr generated with training datasets S/, S2, 

..., 5r, all drawn from the same distribution 5)i, consisting of Cclasses. Assume that a new 

database of distribution Sh become available which includes instances from an additional 

{C+If class. AdaBoost.Ml will select the next training set ST*I from S)^ based on the classi­

fication performance of hp, which was generated from a database that did not include the 

(C+I)" class. Furthermore, note that once the training set is selected, each classifier is inde­

pendent and is likely to perform equally well (or poorly) on all classes (unless one class is 

particularly more difficult than others). In other words, hypothesis hm will perform equally 

well on instances coming from (C+y/'class. Therefore, patterns from the {C+1)" class will 

not necessarily be selected into St*/, and they will have no advantage of being selected into 

the training dataset in the next few iterations. Consequently, learners will not be forced to 

focus on the patterns of the new class. The final weighted majority will then fail to recognize 

samples from the new class for many iterations to come, increasing the time and space com­

plexity of the algorithm'. 

' Theoretically, if allowed to continue infinite number of times, AdaBoost.M I should eventually be able to 

learn the new class. However, in all simulations where new classes were introduced, AdaBoost.M I was unable 

to converge for a very long time (after which it was aborted) for all databases on which it was simulated. 
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The distribution update rule can, however, be forced to focus on instances of the new 

class, if the update rule is based on the combined performance of all r hypotheses generated 

during the previous t iterations. Let us call the weighted majority voting of the previous t 

hypotheses the composite hypothesis H,. Note that when instances from a new class become 

available, they will be misclassified by H,, since none of the previous t training sessions have 

seen instances trom the new class. Therefore, updating the training dataset distribution based 

on the classification results of H, will ensure that the selection of instances from the new 

class is favored. 

The Leam-h- algorithm, which incorporates these ideas into a smarter distribution update 

rule is described in the following section. As shown in the following sections, Leam-h- not 

only allows the weak teaming algorithm to team incrementally from new data, but at the 

same time it converts the weak teaming algorithm into a very powerful classifier. 

6.7 Learn-f-t-: An Incremental Learning Algorithm 

Leam-h- is an algorithm that allows any classifier to team incrementally from additional 

data, without forgetting what is previously teamed, even when the new data includes a new 

class. To achieve this rather ambitious task, Leam-h- introduces a number of modifications to 

the basic ideas of AdaBoost. First, the training error is redefined. In AdaBoost.Ml, the error 

£t is the training error of the weak leamer, calculated using the training patterns misclassified 

by h,. This constitutes a problem, when using neural network type classifiers such as MLPs 

as base classifiers, since a converged neural network almost always performs close to 100% 

on its training data for any nontrivial error goal. This is particularly tme for RBF, PNN, 

GRNN, ARTMAP type algorithms, since these algorithms guarantee 100% correct classifica­
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tion on their training database. In order to ensure weak learning and a nonzero et, Learn-h-

first divides the selected training dataset T, into subsets TR, and TE,, where TR, is the training 

subset and TE, is the testing subset for the current training dataset T,. During the t''' iteration, 

the weak learner is trained on TR,, and tested on the entire set />= TR, + TE,. For each itera­

tion, different training and testing subsets are selected based on previous performance. The 

error of r*'' hypothesis on the combined {TR, + TE,) set is defined as £(. Eventually (almost) all 

patterns in the original training dataset will be seen by the weak learner, and hence using this 

definition of training error is justified. 

Figure 6.4 presents the Learn-H- algorithm. Initially all instances have equal likelihood to 

be selected into the first training dataset (unless there is prior knowledge to choose other­

wise). In the following discussion, new databases that become available for incremental 

learning are denoted with the subscript k and the (unknown) distribution from which the k"* 

database is drawn will be denoted by the script UK, whereas the distribution of the current 

training dataset at iteration is denoted by D,. 

In each iteration /, the distribution Dt is obtained by normalizing the current weights of 

the instances in step 1. In step 2, training (TR,) and testing (TE,) subsets are randomly gener­

ated from the current database according to the distribution Dt. These subsets are used as 

inputs to WeakLearn in step 3, which returns the hypothesis h, in step 4. The error, e„ is 

then computed from the misclassified patterns ofTR, + TE,. If £,>¥2, h, is discarded, and new 

TR, and TE, are generated. Instead of updating the distribution based on instances misclassi­

fied by h„ Leam-H- then calls the weighted majority voting in step 5 to compute the compos­

ite hypothesis, H,. 
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Algorithm Learn-M- (with major differences from AdaBoost.M I indicated by 

Input: For each database drawn from iDt k=l,2 K ^ 

• Sequence of m training examples 5=[(4r/,y/),(xj, yj) (Jfm.ym)]. 

• Weak learning algorithm WeakLearn. 

• Integer Tk, specifying the number of iterations. 

Do for/t= 7.2 K: 

Initialize vwj  = D{i) = l/m. V/. unless there is prior knowledge to select otherwise. 

Doforr = 1,2 Tt: 

1. Set D, = w, / ̂  >»', (/) so that D, is a distribution. 
/ /=1 

2. Randomly choose training TR, and testing TE, subsets according to D,. ^ 

3. Call WeakLearn, providing it with TRt 

4. Get back a hypothesis /»,: X Y, and calculate the error of h, : £i = X 

T,= TR, + TE,. If £, > '/j. set f = / - /. discard h, and go to step 2. Otherwise, compute 

normalized error as = e, /(l 

5. Call weighted majority, obtain the overall hypothesis A/, = arg max ^ log(l/), 
»:/«,(.t)=y 

m 

and compute the overall error E,  — ( ' )  ~  ̂  ^  '1 
(=1 

If E, > '/2, set r = r - /, discard H, and go to step 2. 4-

6. Set B, = E,/{ I and update the weights of the instances: 

w, . iU)  =  w,U)x \  
1 , otherwise ^ 

Call Weighted majority on combined hypotheses H, and Output the final hypothesis: 

K J 
=argin!ttX L ^"S— 

4=1 t :H, (x )=y  O, 

Figure 6.4 Algorithm Leam-H-
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Note that the composite hypothesis Ht is computed similar to the final hypothesis hj;„ai in 

AdaBoost.Ml, that is, 

//, =argmax X (6-5) 
rM,{x)=\ Pt 

which makes the training error 

^= Z A ^ ^ '1 (6-6) 
i :H, (x , )*y ,  i=l 

on misclassified instances, where [l • l] is 1 if the predicate holds true, and 0 otherwise. From 

this error, we compute the normalized error 

=(A) 
In step 6, the composite hypothesis, H,, and its normalized error, B,, are then used to up­

date the distribution of the instances to be used in the next training session. The update rule is 

... jB,, if //,U,) = y, 

1 , otherwise _ 
(6.8) 

where vv,(i) is simply the weight of the instance for the t"' training session. At the end of T 

iterations (for each database iDk), the final hypothesis is obtained by combining the composite 

hypotheses H,. 

K 

k=l t:H,(x)=y B, 
(6.9) 
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In this algorithm, when a new dataset contains new classes, the composite hypothesis H, 

will misclassify instances from the new class, and the algorithm will be forced to learn these 

instances. 

A disadvantage of this approach is the large storage capacity required to store all hy­

potheses generated to learn the additional class. Addition of data with new classes results in 

generating a large number of hypotheses in order to remove the bias of the combined classi­

fier towards the previous classes. This bias can be reduced significantly by changing the final 

classification rule to 

k i 
ff^„„,=argmaxX ^ 

• *=! rJi,lx)=y Pt 

w'nich combines the original weak hypotheses h„ rather than the combined hypotheses. It 

should be noted however that subsequent hypotheses are still generated with training data 

selected according to a distribution based on the performance of the composite hypotheses 

Ht, which, along with other modifications, distinguishes Leam-h- from AdaBoost.Ml. Ex­

perimental results, summarized in Section 6.9, demonstrate that both final classification rules 

given by equations 6.9 and 6.10 achieve the same performance level in incremental learning 

problems including new classes, whereas AdaBoost.Ml was unable to achieve desired in­

cremental learning performances. 

6.8 Theoretical Error Analysis of Learn-f-t-

In this section a theoretical error analysis of Leam-h- algorithm is given, where the upper 

error bound of Leam-h- on the training data is derived. 
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Theorem: The training error of the Leam++ algorithm given in Figure 6.3 is bounded 

above by £< 2^f[V^ • (l — . where E, is also bounded above by the AdaBoost.Ml error 

Proof: Following a similar approach given in [ 160], we first show that the above error 

bound holds for a two class problem, and then show that a multi class problem can be re­

duced to a binary class problem, allowing the same error bound to hold for the multi class 

case as well. Let Learn+ represent the algorithm for binary problems. 

In a binary class setting where the two possible values for y are 0 and 1, the equations for 

error terms and distribution update rules given in Figure 6.4 can be simplified as follows: The 

combined hypothesis is obtained by 

bound E, < 2'Hyj£, • {{-£,). 

„ Z'ogOM) 
= \ ,=i 2,=\ (6.11) 

0, otherwise 

and the error for f/, is 

m 

^1= Z =Z ) ~ y i  (6.12) 
i :HAx: )*Vj  »=l 

The distribution update rule is given by 

w,>, (/) = Vl',(£)X 
i f  H , i X i )  =  y i  

otherwise 
(6.13) 

and the final classification rule for each dataset is 
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^ final (.r) = arg nm ^ log — = 
i :H, ( . x )=y  ° t  

I, if ilog(l/B,) H,(.c)>iilog(l/fi,) 
,=i 2,=, (6.14) 

0, otherwise 

We define the error of the final hypothesis as sum of the initial weights of the misclassified 

instances, that is. 

E= SW 
i:H ,i„aiU)*\, 

(6.15) 

To find an upper bound for E, we analyze the final weights of the instances after T iterations, 

and associate these weights with the errors committed by composite hypotheses A/,. Note that 

after T rounds, the final weight for any instance is 

T T 
vvr+i(') = = D(/)-nfl,H^'->'l (6.16) 

/=! /=! 

The summation over all instances gives 

^ 1 lu I I ('•)=! 0(0 
(=1 1=1 ;=l 

Comparing the sum of weights of all instances to the sum of the weights that are misclassi­

fied. 

(6.17) 

m m m r 
J]vv7-+,(/)> X»^r+i(')= X DiOl lB ,  (6.18) 
1=1 

We now note that the final hypothesis Hfi„ai will make a mistake on instance i if and only if 

(=1 f=l 

or alternatively, if and only if. 

(6.19) 
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(6.20) 
f=l f=l 

Incorporating Equation 6.20 into Equation 6.18 for misclassified instances, we obtain 

III III T m T T 

1=1 i:H „„^i{x)*y, /=1 /=! »=l 

Hence, 

m 

i^J 
T 

NE' 
E<-^ (6.22) 

i ] ' -
/=! 

giving us an upper bound for the error of the final hypothesis. However, this upper bound 

based on the weights of individual instances is of little use, since it is difficult to keep track 

of the weights of every instance used for each hypothesis. The sum of these weights can also 

be limited by an upper bound, based on the errors of each H,. Recognizing that 

<\-{ \ -  B)y  for 0<fl<l, and starting with the sum of the weights of all instances. 

m m 1 i t r  I " •  /  

/=! /=! /=! 

jh We now define the intermediate variable 4*, (/) = \H ,  (x,) - v, | as the loss of the /'' hypothesis 

on instance /, then the total error of the combined hypothesis is 

m 

(6.24) 
m 

= I^,(0-4',(/) = D,-4', 
/=i 

Furthermore, recall from step 1 ofLeam-h-algorithm that 
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/ »=i 

Substituting equations 6.24and 6.2S into Equation 6.23, 

m m MI 
£ iVf+i (/•) < £ w, (/) - (1 - fi, )£ w, (/)(i - % (/)) 
(=1 (=1 /=i 

m f m ^ 

- X (/) - (l - )| X ~ ̂  t • ^1J (6.25), we obtain 
/=1 V./=i 

/ m 
and from (6.24) 

m f m 
^ X ^ - (L - ̂  J Z (') - Z 

/=1 \i=\ 

m I m 

\i=l 

^ S (') - (I - J Z (') - • Z 
I=\ Vi=l 1=1 

m m 
^ Z - (1 - )Z ('Xi - Et) 

1=1 1=1 
m 

(6.26) 

£5;.^,(/)(1-(1-B,X|-£,)) 
/=! 

After T iterations, we obtain 

m T 

I » Y . i ( O S n i - ( l - B , X l - E , )  ( 6 " )  
1=1 ;=1 

Substituting Equation 6.27 into Equation 6.23, 

m T 

E < ̂  or, 

YiB]"  (6.28) 
/=! /=! 

i l - { l - S , X l - £ , )  
E S l l  - U 3  

t = l  o ,  

which gives us an upper bound on the training error in terms of the normalized error and the 

actual error of the combined hypotheses H,. Note that no relationship has been assumed be­

tween Erand B, in this derivation. We now find the optimum value for Bt from Equation 6.28. 



www.manaraa.com

177 

Since all terms in Equation 6.28 are positive, we can take the derivatives individually for 

each t. 

Br 
(6.29) 

dS ,  '  l -E ,  

Finally, substituting Equation 6.29 into Equation 6.28, 

£<2^nV£,( l -E , )  (6 .30)  
/=i 

which is identical in form to that of AdaBoost, except the errors of individual hypotheses h, 

are replaced by the errors of composite hypotheses //,. Furthermore, since each composite 

hypothesis H, is obtained from individual hypotheses li, much like the final hypothesis is ob­

tained from the composite hypotheses, an identical error analysis can be carried out for each 

H, individually, which will then yield 

E,<2 'Y l^£ , { l -£ , )  (6.31) 
5=1 

as the error of //„ which is identical to overall error of AdaBoost.Ml. 

So far, we have shown the error bound for the binary classification problem; however, it 

is easy to show that the same analysis holds for multi-class problems by establishing a one-

to-one mapping between the binary class and multi-class problems. Again following a similar 

approach to that in [160] for each instance in the Leam++ training set we define a 

Leam+ instance (.r,, ) with .v, = some random number, and y, = 0. We also define the ini­

tial distribution for Leam-(- instances to be the same as Leam-h- instances. 
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For each iteration t we pass the hypothesis H, (/) = [l H, (.r,) * l] as if WeakLearn re­

turns it to Leam+. Note that according to this formulation, if Leam-H- misclassifies .r„ then it 

will return 1 to H,{i). Since the correct class of the corresponding .v, is zero (all instances 

for Leam+ are of class zero by our previous definition), then misclassifies this instance 

as well. On the other hand, if Leam-H- correctly classifies instance x„ it will return 0 to 

H, ( / ) ,  and  s ince  th is  i s  a l so  the  cor rec t  c lass  for  a l l  Leam-t -  ins tances ,  H, (/) also classifies 

the corresponding instance .f, correctly. In other words, when the multi-cla.ss algorithm makes 

an error, the binary class algorithm makes an error, and when the multi-class algorithm cor­

rectly classifies an instance, so does the binary class algorithm. Since initial distributions for 

both algorithms were defined to be identical, errors computed by both algorithms will also be 

identical, hence £,=£,, B, = B,, and w, = w,. Therefore, the error of the final hypothesis 

E will also be identical to that given in Equation 6.30. # 

6.9 Learn-t>-»- Performance Results 

6.9.1 Simulation Databases 

Five databases were used to test the incremental learning capabilities of the procedure de­

scribed in the preceding section. These databases were chosen from a variety of sources to 

test the robustness of the algorithm. 

I. Vehicle database: The vehicle database is a small database obtained from University of 

California at Irvine (UCI) Machine Learning Repository web site [176]. This dataset was 

specifically chosen because it is one of the most challenging datasets in the UCI reposi­

tory. Typical performance levels reached by most learning algorithms have been in the 
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range of 60% to 70% for this data set. The database consists of 846 instances, each in­

stance having 18 attributes, and belonging to one of four classes. This database was used 

to test the incremental learning algorithm with no new classes. 

2. Optical Digits: Also obtained from the UCI repository, optical digits is a large database, 

consisting of a training set of 3823 instances and the test data set of 1797 instances. Only 

1200 instances of the training dataset were used in this study. The characters were num­

bers, 0 through 9, and they were digitized on an 8x8 grid, creating 64 attributes as shown 

in Figure 6.5. Two of those attributes were zero for all instances, and hence were re­

moved from the feature set. This database was also used to test for incremental learning 

with no new classes. 

3. Rectangular Regions: This is a simple synthetic database of two attributes and four 

clas.ses, artificially generated for testing for incremental learning with new classes. The 

data are plotted in Figure 6.6 in Section 6.9.4 where the performance of Leam-h- on this 

data.set is discussed. 

4. Circular Regions: This dataset, consists of five concentric circles in a two dimensional 

space, where the five circular rings produced the five classes. This database was specifi­

cally generated to test the invariance of Leam+-i- to the order of presentation of data. The 

classifiers were originally trained with three classes, and the other two classes were added 

later. Figure 6.7, in Section 6.9.S, illustrates the data. 

5. VOC Database: This is the VOC mixture data for the identification of the five dominant 

VOCs described in detail in Chapter 3. The classifiers were originally trained with using 

three dominant VOCs, and the other two were added later. 
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It should be noted that in all simulations, no old data were used in subsequent stages of learn­

ing, strictly complying with the notion of incremental learning. Furthermore, each simulation 

was tested on an independent data set that was never used during training at any stage. It 

should also be noted that the algorithm developed does not depend on a specific classifier. 

We have applied this algorithm by simulating WeakLearn algorithm using a MLP with a 

relatively large error goal. MLP was chosen in the following implementations, since it is the 

most commonly used learning algorithm for classification purposes. However, Leam-h- is 

independent of the weak learner used. In the following discussions, each hypothesis refers to 

the decision surface generated by each MLP. 

Results on each databiise are presented and discussed in the following sections. 

6.9.2 Vehicle Data 

The 846 instance database was divided into four subsets, SI through S3 of 210 in.stances 

each for training, and TEST of 216 instances for validating the classification performance. 

Instances in TEST were never seen by any of the classifiers. 

For each traming session, only one of the training datasets was used. That is, only SI was 

used during the first training session, only S2 was used during the second training session, 

and so on. For each training session /t= 1,2,3, thirty hypotheses were generated by Leam-h-

according to the algorithm given in Figure 6.4. Each hypothesis h, (f=l,2 30) of the train­

ing session k was generated using a training subset TR, and a testing subset TE„ each with 

120 instances drawn firom Sk (fc=l,2,3). A single layer MLP of 18 input nodes, 30 hidden 

layer nodes and 4 output nodes with an error goal of 0.1 has been used as the base classifier. 

The results are summarized in Table 6.1. Recall that during training with S2, SI was not 
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shown to the algorithm; however, 5 = Sj U ^2 was used to evaluate the performance of the 

algorithm after the second training session. Note that this evaluation is used for display pur­

poses only, since S = SI U 52 was never used by the algorithm for training. During training 

with S3, the merged data was S = SlU S2U S3, and so on. Note that for the first training 

session, S=Sl. 

In the second column, the average classification performances of individual hypotheses 

are given for each dataset, where classification performances are computed as the percentage 

of correctly classified test instances. For example, during the first training session. Training 

I, the individual hypotheses (MLPs) had an average classification performance of 62% on 

SI. This is attributed mainly to the small training datasets, and lack of convergence due to 

high error goal. Since the MLP was used as a weak learner, this performance was perfectly 

adequate. 

Increasing the number of hidden layer nodes, reducing the error goal, or increasing the 

number of training instances would improve the performance of individual MLPs; however, 

this would defeat the purpose of using weak classifiers. 

Table 6.1 Classification performance of Leam-H- on vehicle database 

s, 62% 93% 82% 79% 

S: 60% - 86% 78% 

S.v 64% - - 91% 

S 62% 93% 84% 82.6% 

TEST 57% 78% 80.4% 83% 
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Despite the 62% classification pertbrmance of individual hypotheses on the average on 

SI, Leam-K- had a 93% classification performance on the same set by using an ensemble of 

30 such hypotheses, demonstrating its performance improvement capabilities similar to that 

of AdaBoost.Ml. 

The fourth column shows the results of Training 2 for S2, which generated additional 30 

hypotheses. The weighted majority of the hypotheses generated in Training 1 and Training2 

had classification performances of 82% on SI, and 86% on S2, giving an average of 84% on 

S = SI U S2 .The performance of these 60 hypotheses on the test set improved to 80.4% from 

78%. 

Finally, the last column shows the results of Training 3 for S3, which also generated 30 

hypotheses. The weighted majority of these 90 hypotheses provided classification perform­

ances of 79% on SI, 78% on 52, and 91% on S3, giving an average of 82.6% on 

S = S1U52U53. The performance on the test set improved to 83% after S3 was shown to 

Leam-H-. The gradual increase in the performance of Leara-H- on the TEST set, as new data 

are introduced, demonstrates the incremental learning capability of the algorithm, without 

forgetting previously learned information. 

A similar terminology is used in the following paragraphs in presenting the results on 

other databases. Furthermore, in order to distinguish performances of individual hypotheses 

from those of ensemble of hypotheses through weighted majority, the latter will be referred 

to as Leam++ performance through out the rest of this chapter. 
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6.9.3 Optical Digits Database 

A total of 1200 instances containing all ten classes were randomly selected from 3823 in­

stances comprising the original training dataset. These 1200 instances were divided into six 

subsets SI through S6 to construct six datasets of 200 instances each. For each training ses­

sion )t= 1,2,...,6, 30 hypotheses were generated using the Leam-h- algorithm given in Figure 

6.4. Each hypothesis h, (r=l,2,...,30) of the training session k was generated using a training 

subset TR, and a testing subset TE„ each with 100 instances drawn from Sk (A-1,2,...,6). An 

additional validation set, TEST, was used for validation purposes. Instances in TEST were 

never seen by any of the classifiers. The classification algorithm used as WeakLearn was a 

single layer MLP of 62 input nodes, 30 hidden layer nodes and 10 output nodes with an error 

goal of 0.1. Figure 6.5 illustrates typical samples from the optical digits database. Note that 

this is a fairly noisy database due to quantization errors during discretizing, and the large 

variations in subjects' handwriting. 

Table 6.2 presents the results, where the six training databases are denoted by 51 through 

56. In the second column, the average performance of individual hypotheses is given for each 

dataset. The third column of the table shows the results at the end Training 1. Note that, al­

though individual hypotheses had a classification performance of only 55% on their training 

sets, the weighted majority of these algorithms correctly classified 80%~90% of the training 

data, once again demonstrating the performance enhancement properties of Leam-h- on any 

single dataset. 
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H CI El M n 
S 6 7 8 9 

HEiiaiara 
H i i n n H  

5 6 7 8 9 

Figure 6.5 Optical digits database 

The fourth column shows the results of Training 2 with 52, which generated an addi­

tional 30 hypotheses. The weighted majority of the hypotheses generated in Training 1 and 

Training! performed 94% on Si, and 93.5% on S2, giving an average of 93.7% on 

5 = 5, U ^2. The performance of these 60 hypotheses on the test set improved to 84.7% from 

82%. 
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Table 6.2 Classification performance of Leam-H- on optical digits database 

1̂  1̂  MN • • 
55% 94% 94% 94% 93% 93% 93% 

.V2 53% — 93.5% 94% 94% 94% 93% 

5, 51% — — 95% 94% 94% 94% 

54 53% — — — 93.5% 94% 94% 

-S's 56% — — — — 95% 95% 

5; 58% — — — — — 95% 

5 54.3% 94% 93.7% 94.3% 93.6% 94% 94% 

TEST 41.3% 82% 84.7% 89.7% 91.7% 92.2% 92.7% 

Similarly, the last column shows the results of Training 6 with S6. The weighted major­

ity of these 180 hypotheses had an average of 94% classification performance 

on5 = 5| U ̂ 2 U ^3 U ^4 U ̂ 5 U ̂ 6 • T^he classification performance on the validation set 

TEST was 92.7%, which improved steadily as we introduced new data. This demonstrated the 

incremental learning capabilities of Leam-h- for a problem that did not include new classes. 

6.9.4 Rectangular Regions Database 

This database had four classes and consisted of four training datasets, SI through S4, and a 

validation dataset, TEST. SI and S2 comprised of 366 and 394 instances, respectively, includ­

ing instances from classes 1, 2 and 3. Only 200 instances were used during training, and the 

remaining instances (along with those used for training) were used for evaluating individual 

hypotheses. S3 and S4 included instances from all four classes and had 500 instances each. 
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Two hundred and fifty instances from these datasets were used for training. Figure 6.6 illus­

trates this dataset. The performance of Leam-h- on this database is shown in Table 6.3. 

Several points can be observed from the results in Table 6.3. First, since this was a very 

simple database, the boosting classification performances were all in the upper eighty to 

ninety percent ranges. However, our interests are mainly in the last row presenting the per­

formance on the test dataset. Recall that test set includes instances from all classes. Since no 

class-4 instances were seen during the first two training sessions, the boosting classification 

performance on this data set was in lower 70%-i- range. As the algorithm reached the third 

training session, instances from the fourth class also became available in the training set, and 

the boosting performance suddenly jumped to 94%. Addition of the fourth dataset provided 

only a minor improvement compared to that of the third set, increasing the boosting perform­

ance to 96%. 

0 1 2 3 4 5 

Figure 6.6 Rectangular regions dataset 
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Table 6.3 Classification performance of Leam-H- on rectangular regions database 

IBI 
5, 67% 99% 98% 86% 93% 

S: 72% 98% 86% 92% 

s.< 68% 91% 94% 

s. 70% 96.4% 

s 69% 99% 98% 87.6% 93.8% 

Tfisr 48% 71% 72.7% 94.2% 96% 

The second important point is the number of iterations that were required to reach these 

accuracy levels. The numbers in parentheses in the first row indicate the number of iterations 

(number of hypotheses generated) used during each training session. Note that only seven 

hypotheses were generated in Training 3 and only four in Training 4. In fact, the perform­

ance rates started oscillating around the maximum performance levels after the indicated 

number of iterations. These observations imply that there is little or nothing to gain in allow­

ing the algorithm to continue after that stage. 

6.9.5 Circular Regions Database 

Circular regions database is a synthetic database of concentric rings with two attributes 

and five classes. The database is artificially generated for testing the performance of Leam-h-

on incremental learning when instances with new classes are introduced. Figure 6.7 illus­

trates this database. In an attempt to see if the order of presentation has any effect on the per­

formance of this algorithm, two sets of simulations were made on this database with six train­

ing datasets, 51 through 56 and a validation dataset. The order in which classes were intro­
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duced to the algorithm was different in these cases. Table 6.4 summarizes the data distribu­

tion of this database. Note that in the first case. Learn ++ was initially trained with classes 1, 

2 and 3. Classes 4 and S were added later in two separate training sessions. In the second 

case, Leam-H- was initially trained with classes 1, 3 and 5, whereas classes 4 and 2 were 

added later. Total number of instances in each dataset and the number of instances used for 

each training session, are also shown in Table 6.4. The validation data TEST included in­

stances from all classes for both cases. 

Table 6.4 Data distributions for circular regions database 

Total number of 

inxUince.s 
ISI 155 241 251 250 250 500 

Classes iiicliuled for 

/" run 
1.2,3 1.2,3 1,2,3,4 1.2,3,4 1.2,3,4,5 1.2,3,4,5 1.2.3,4.5 

Classes included for 

T'' run 
1,3,5 1,3.5 1,3,4,5 1,3,4,5 1.2,3.4.5 1.2,3,4,5 1.2,3,4,5 

Number of instances 

in traininn set 
90 90 140 140 140 140 -

Table 6.S summarizes the results obtained with this dataset. As expected, the Leam-h-

performance on the validation dataset TEST shows sudden jumps as instances of new classes 

become available during Training 3 and Training 5. Also as expected, the improvement in 

the performance after Training 4 and Training 6 are minor compared to the previous ses­

sions, since these sessions bring no instances with new classes. This also shows itself in the 

number of hypotheses generated during each training session (these numbers are given in the 

first row). 



www.manaraa.com

189 

Table 6.5 also shows an additional column titled "Last 8", which indicates the Leam-h-

perfonnance of the last eight hypotheses. Note that these hypotheses were trained with a 

dataset that included all classes, and one might expect that once these hypotheses are gener­

ated, earlier hypotheses are no longer necessary. As the last column in Table 6.5 illustrates, 

this is not true, since the last eight hypotheses alone were not adequate to give satisfactory 

performance. This demonstrates that all hypotheses are indeed necessary for the final classi­

fication. 

Figure 6.7 Circular regions database 
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Table 6.5 Classification performance of Learn++ on circular regions database (1*' run) 

MM NN •1 B IM M 
i'l 98.7% 96.7% 91.4% 91.4% 95.3% 95.3% 41.7% 

^2 — 96.1% 87.1% 85.8% 92.2% 91.6% 40.6% 

S3 — — 98.3% 98.3% 72% 90.8% 51.5% 

s. — — — 93.6% 77% 88.4% 49.8% 

5s — — — — 88% 95.2% 60.4% 

5,. — — — — — 96.4% 53.6% 

5 98.7% 96.4% 92.2% 92.2% 84.9% 92.9% 49.6% 

TEST 55.6% 56.8% 73.2% 74.4% 85.8% 89.6% 52.8% 

The results obtained with the second dataset are given in Table 6.6. Comparing results 

from Table 6.6 with the corresponding entries of Table 6.5. it can be concluded that the algo­

rithm is invariant to the order of presentation of data when a MLP is used as the weak learn­

ing algorithm. 

Another point of interest is the slight decline of Leam-h- performance on the previous 

training datasets. This is probably due to the fact that the algorithm forces the subsequent 

weak learners to focus on the data that come from the new classes. 

Once again we note that the performance on the validation data steadily increased as ad­

ditional data became available, with largest jumps in the performances coming from the 

training sessions that introduced a new class. The incremental learning of new data without 

introducing a new class improves the classification performance only marginally since most 

of the knowledge to be learned was learned during the previous training. 
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Table 6.6 Classification performance of Leam-H- on circular regions database (2*^ run) 

HI 
-V, 100% 100% 94.8% 94.6% 91.1% 92.8% 

— 100% 92.4% 95.2% 90.6% 88.5% 

S: — — 100% 96.8% 91.5% 93.5% 

s. — — — 98.0% 90.5% 91.1% 

s. — — — — 83.0% 86.8% 

s. — — — — — 88.8% 

s 100% 100% 95.7% 96.1% 89.3% 90.3% 

TEST 59.4% 59.8% 72.2% 73.4% 80.8% 88.0% 

6.9.6 Mixture VOC Database 

The final test was implemented on the real world data of the NCTpreprocessed mixture 

VOC database, described in Chapters 3 and 4. The database consisted of 384 patterns, each 

with six attributes, belonging to one of five dominant VOC classes. The database was divided 

into four subsets, three for training and one for validation. The distributions of these datasets 

into five classes are given in Table 6.7. Note that as S2 and S3 were generated, the distribu­

tion was deliberately biased towards instances from the new classes, TCE, and xylene, re­

spectively. The reason for doing so was simply to simulate a case where a new data would 

mostly be composed of signals from a new class. The network had a 6x30x5 architecture, 

with an error goal of 0.05, however, the classification performance of Leam-h- was not too 

sensitive to these parameters. We were able to obtain similar results for a variety of network 

architectures and error goals. 
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Table 6.7 Data-class distribution for the VOC database 

1̂ 1 HH 
s, 20 0 20 0 40 

S: 5 25 5 0 5 

5 5 5 40 5 

TEST 34 34 34 40 62 

Table 6.8 Classification performance of Leam-H- on the mixture VOC data 

Si 96.2% 77.5% 76.25% 

S: 87.5% 82.5% 

S, 90.0% 

TEST 60.78% 70.1% 88.2% 

Leam-h- performances on these four sets of data are shown in Table 6.8. As observed in 

previous cases, the performance decreases in the first few training datasets, but increases sig­

nificantly over the entire test set (which includes instances from all classes). For this particu­

lar database, we may have a physical reason for the performance decrease over the earlier 

training datasets. From our earlier experience, we know that the xylene patterns look re­

markably similar to toluene and TCE patterns, which may account for some of the perform­

ance decrease after the last training session. However, a major factor is that the training data 

distributions were biased towards a certain class. Recall that the database was generated to be 

particularly biased towards instances from new classes, since in practice, it is possible for the 

new data to include only a few (or no) instances from previously learned classes. 
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It is also interesting to note that the classification performance of Leam-h- on the VOC 

dataset is very comparable to those of various strong learners, developed in Chapter 4. 

6.9.7 Fuzzy ARTMAP on VOC Database 

As discussed above, Leam-h- did consistently well on all databases, synthetic or real 

world, in learning new data which may include new classes. In fact, as shewn in the VOC 

database example, it performed as well as a strong classifier that had access to the entire da­

tabase. A more interesting, and fair, comparison is the performance of Learn-h- with that of 

Fuzzy ARTMAP, an established algorithm for incremental learning. 

Fuzzy ARTMAP was tested on the same VOC database, the distribution of which was 

given in Table 6.7. As discussed in the literature review section earlier in this chapter. Fuzzy 

ARTMAP is very sensitive to pa, the vigilance parameter of the ARTa module. Therefore, 

various values were tried to find the optimum value of pa to obtain the best performance of 

fuzzy ARTMAP. Table 6.9 presents the classification performance of Fuzzy ARTMAP for 

various values of pa. 

Table 6.9 Classification performance of Fuzzy ARTMAP on the mixture VOC data 

s, 100% 100% 100% 

S: 100% 100% 

100% 

r£iT(p.,=0.(S'5j 54.9% 68.1% 82.8% 

TEST{^:,=0.<J0) 50.5% 67.2% 83.8% 

TEST (^^=0.95} 43.6% 59.3% 71.1% 
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Note that the classification performance of fuzzy ARTMAP is always 100% on training 

data, since according to the ARTMAP learning algorithm convergence is achieved only when 

all training data are correctly classified. Furthermore, once a pattern is learned, a particular 

cluster is assigned to it, and future training does not alter this clustering. Therefore, ART-

MAP never forgets what it has seen as a training data instance. The improvement in the clas­

sification performance of the test data once again demonstrates that ARTMAP is indeed ca­

pable of incremental learning; however, even its best performance (83.8%) was not able to 

match that of Leam-h- (88.2%). In particular, note that the performance of Leam-H- was al­

ways better at each step of the training than that of Fuzzy ARTMAP. Also note that the 

slightest change in the vigilance parameter causes significant deterioration of the perform­

ance. Unlike ARTMAP. Leam-h- is a very robust algorithm, since its parameters need not be 

fined tuned. 

6.10 Learn-i"i> with Mahalanobis Weighted IMajority 

Two issues of particular importance in the Leam-h- algorithm are the distribution update 

rule and the weighted majority algorithm for combining the classifiers. In the Leam-h- algo­

rithm, the weights for combining the individual hypotheses are determined through the clas­

sification performances of these individual hypotheses on their own training data (care 

should be taken for not confusing the weights of training data instances with the weights of 

the hypotheses for the weighted majority). 

As an alternate approach, assume that we knew which hypotheses are likely to classify a 

given instance correctly before assigning weights to the hypotheses. We could then weigh 

those hypotheses more heavily for the final classification of that instance. Such information 
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can be obtained by measuring the distance between each instance and the training datasets 

used to train each hypothesis. Unfortunately, this requires that we have access to the previ­

ously used datasets. However, computing the distance metrics does not require all the data, 

but rather certain statistical indicators of the data, such as the mean and the covariance ma­

trix. 

The number of instances in the training data is typically much larger than the dimension­

ality, N, of the dataset. Hence the storage required for, say the covariance nfiatrix of size NxN 

is significantly less than the storage required for the entire data. 

In particular, if the mean and the covariance matrix of each dataset are available, the Ma­

halanobis distance of an instance with each of the datasets can be computed by 

A/, =(x-m ,)^C,~'(x-m,)  (6.32) 

where x is the unknown instance, m, is the mean and C, is the covariance matrix of TR,, the 

training dataset used for the f"* hypothesis, and M, is the Mahalanobis distance of x to TR,. A 

smaller Mahalanobis distance indicates that the instance x is similar to instances that were in 

TR„ and hence the f"' hypothesis is likely to classify this instance correctly. Therefore, the 

reciprocal of Mahalanobis distances can be used as weights of hypotheses. Note that the 

weight of hypothesis t changes with each instance, that is, the weights are updated dynami­

cally. 

In fact, this concept can be ftirther improved by computing the Mahalanobis distances of 

each instance to subsets belonging to a particular class. If at iteration t, the classifier was 

trained with a dataset which included instances from C classes, we can partition TR, into C 

subsets, TR ,c containing instances of TR, belonging to class c, c=I,2 C. 

We can then compute M,c as 
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=(x-m,c)^C,,."'(x-ni,c) c = l,2,-",C (6.33) 

the Mahalanobis distance of x from TR ,c, where nin is the mean ofTRu, and C,c is the co-

variance matrix of TR,c. The Mahalanobis weight of the /"' hypothesis can then be obtained as 

AfW, = j- r c = l,2,-.C (6.34) 
min(A/,£. j 

where MW, is dynamically updated for each data instance x. This scheme finds the minimum 

Mahalanobis distance between instance x and each one of the C datasets TR^, and assigns the 

Mahalanobis weight of the t"'' hypothesis as the reciprocal of this minimum Mahalanobis dis­

tance. 

It can be argued that the classification decision is already being made by the choice of the 

minimum Mahalanobis distance, since if instance x belongs to a particular class, and in­

stances from that class have been used in the current dataset, then the Mahalanobis distance 

between x and TR,, is likely to be minimum among all others. This is indeed true for datasets 

with non-overlapping classes and instances, which do not have any noise. In practice, how­

ever, this is not the case, and a decision based on the Mahalanobis distance only would not 

achieve good classification performances on challenging datasets, such as the VOC dataset. 

Note that the Mahalanobis distance is not used directly for making a classification decision, 

but rather it is used to assign a weight to various hypotheses. Using this scheme, Leam-h-

simply tries to make a more intelligent distribution of weights among the hypotheses gener­

ated. The algorithm Leam++ using Mahalanobis weighted majority voting is given in Figure 

6.8. 

Note that normalized error terms, P, of individual hypotheses or Bt of the composite hy­

potheses, are not used to determine the weights for combining the hypotheses. In fact, it is no 
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longer necessary to compute P,\ however, it is necessary to compute fi,, since the distribution 

update rule is still based on this normalized error term of composite hypotheses. 

It should be noted that the Mahulanobis distance calculations require the computation of 

an inverse of a covariance matrix; therefore, this matrix must be ensured to be non-singular. 

The covariance matrix is usually a nonsingular matrix, as long as two instances are not re­

peated in the original dataset (that is all rows and columns are linearly independent), and the 

number of instances exceeds the dimensionality. These requirements ensure that the covari­

ance matrix is a HiU rank matrix. 

In general, the number of training data is significantly larger than N. However, since the 

training data is chosen randomly from a given distribution, even if the training instance selec­

tion is done without replacement, some instances may be too similar to each other, hence 

making the inverse covariance matrix close to singular. 

The algorithm given in Figure 6.8 is designed to handle reasonable number of such cases. 

Note from Equation 6.34 that the weights assigned to hypotheses are inverses of the Maha-

lanobis distances. If a covariance matrix is singular, then the Mahalanobis distance is com­

puted to be infinity, the reciprocal of which is zero. Since the maximum of weights is consid­

ered in step S of the algorithm, cases causing singularities are effectively discarded. 

Simulation results in testing Leam-h- using Mahalanobis distance to compute the weights 

of the hypotheses is discussed in the next section where the algorithm is applied to the VOC 

database, and an ultrasonic weld inspection database. 
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Algorithm Learn-H- with Mahalanobis Weighted M^ority Voting 

Input: For each dataset drawn from SK k=l,2,....K 

• Sequence of m training examples 5=[(.t/,y/), to, y^),... ,(.rm,>'„,)]. 

• Weak learning algorithm WeakLearn (MLP). 

• Integer Tk, specifying the number of iterations. 

Do for k=l,2 K: 

Initialize vvj = D(/) = i/ni, V(, unless there is prior knowledge to select otherwise. 

Dofor/= 1,2 Tt: 

1. Set D, = w, / ̂  vw, (/) so that D, is a distribution. 
/ «=i 

2. Randomly choose training TR, and testing TE, subsets according to D,. 

3. Call WeakLearn, providing it with TRt 

4. Get back a hypothesis /i,: X Y, and calculate the error of li, '• £i = S 
)*,v, 

on TR, + TE,. If e, > V2. sett = t - I. discard h, and go to step 2. 

5. Compute the variances and means of the datasets used, and call Mahalanobis weighted 

majority, to obtain composite hypothesis H, = arg max MW, , where MWt is the 
rJi,ix)=y 

Mahalanobis weight of f"' hypothesis. 

m 
6. Compute the overall error E, = = ^ D, (/)[l H,(x,-) ^ v,-1] 

i:H,(Xi)*yi i=\ 

If E, > Vz, set f = f - /. discard H, and go to step 2 

7. Set B, = E,/{ 1 -E,), and update the weights of the instances: 

vv,.,(i) = vv,(i)x-^ 
[I , otherwise 

Call Mahalanobis weighted majority on all hypotheses generated so far and Output 

K 
the final hypothesis: H f,„ai — «U"g niax ^ 

k=l rJi,(x)=y 

Figure 6.8 Leam-H- with Mahalanobis weighted majority 
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6.11 Classification Performance of Learn-f-i- using lUiahalanobis Distance 

6.11.1 VOC IMixture Dataset 

Leam-h- with Mahalanobis weighted majority was first evaluated on the VOC dataset 

explained in Chapter 3 and Section 6.9.6 of this chapter. However, to ensure that no instance 

was choscn twicc for any training subset, the distribution of the training data was slightly 

modified. Note that according to Table 6.7, there were 5 instances of ET, OC and TL in S2, 

and 5 instances of ET, OC, TL, and TCE in S3. Since the dataset is six dimensional, there 

had to be more than six instances fi-om each class to ensure full rank of the covariance ma­

trix. The distribution of the modified dataset is shown in Table 6.10. 

Table 6.10 Data-class distribution for the VOC database 

s, 20 0 20 0 40 

S: 10 25 10 0 10 

S: 10 15 10 40 10 

TEST 24 24 24 40 52 

Leam++ was tested on this dataset using two different versions of the Mahalanobis dis­

tance, namely the ones given in Equation 6.32 and Equation 6.33. In the first definition, we 

compute the Mahalanobis distance between each instance and the entire training set TR, used 

to obtain the i''' hypothesis. In this case, we only need to ensure that each dataset had at least 

six instances, which is easily satisfied by both data distributions given in Table 6.7 and Table 

6.10. Table 6.11 presents the classification results where the Mahalanobis distance was com­

puted according to Equation 6.32. 
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Table 6.11 Classification performance of Leam-M- on VOC data using 

Mahalanobis distance in combining classifiers (1'* run) 

Si 98.8% 86.3% 75.0% 

S: 89.9% 90.1% 

94.1% 

S 98.8% %1A% 86.4% 

TEST 56.7% 64.0% 86.6% 

Compared to the results given in Table 6.8, Table 6.11 shows some deterioration in the 

overall performance on the test dataset, though the algorithm does demonstrate its incre­

mental learning capabilities. Table 6.12 shows the classification results obtained using Maha­

lanobis distance as defined in Equation 6.33. The performance using this version of Maha­

lanobis distance is better than that using the previous version and that for the original 

Leam++ performance given in Table 6.8. 

Table 6.12 Classification performance of Leam++ on VOC data using 

Mahalanobis distance in combining classifiers (2*^ run) 

s, 100% 97.5% 92.5% 

96.4% 96.4% 

92.9% 

S 100.0% 97.0% 93.6% 

TEST 57.3% 67.1% 89.6% 
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6.11.2 Ultrasonic Weld Inspection Database - Ascans 

Leam-H- using Mahalanobis distance in weighted niajority voting (according to Equation 

6.33) was also tested on a highly challenging database of overlapping classes. This database 

consisted of ultrasonic weld inspection signals (UWl). The problem is to identify the types of 

defects that are commonly encountered in weld inspection, namely, crack, lack of fusion 

(LOF), slag and porosity. Detailed information on this database can be found in [177]. The 

training dataset consisted of the ultrasonic weld inspection signals from these four classes. 

Each instance was obtained by taking 149 DWT coefficients of the 512-long time domain A-

scans. The entire training set contained 974 crack. 2535 LOF, 1201 slag and 448 porosity 

signals. Figure 6.9 illustrates typical normalized A-scans obtained from this database. 

Note that crack, LOF and slag signals look remarkably similar; only porosity signals 

show some difference in the high energy support region and ringing effects. Figure 6.10 

shows the corresponding 149 DWT coefficients for the signals in Figure 6.9, where the data 

reduction is clearly noticeable (all samples beyond coefficient 150 were negligibly small). 

Three distinct datasets Sl~ S3 were then generated, where SI had instances only from 

crack and LOF, 52 had instances from crack, LOF and slag, and S3 had instances from all 

four classes. A total of 2200 A-scans were randomly selected into these three datasets ac­

cording to the distributions given in Table 6.13. A validation set, TEST, of 800 instances was 

also generated for evaluation purposes, and this dataset was never shown to the classifiers 

during training. The weak learner used to generate individual hypotheses was a single hidden 

layer MLP with 50 hidden layer nodes. The mean square error goals of all MLPs were preset 

to a value of 0.02 to prevent overfitting and to ensure a weak learning algorithm. 



www.manaraa.com

202 

0.5 

•0,5 

250 
(•) 

300 350 400 450 100 150 200 SCO 

0.5 

•0.5 

450 100 250 300 350 400 500 200 

0.5 -

•0.5 

450 100 200 250 300 350 400 500 150 
(c) 

- • 1 [ 

1 

- 1 1 

11 

i, . i i i i 1 
0 S0 100 1S0 200 2S0 300 360 400 4S0500 

M 

Figure 6.9 Typical A-scans (a) crack, (b) LOF, (c) slag, (d) porosity 

Table 6.13 Distribution of weM inspection signals 

SI 300 300 0 0 

s: 150 300 150 0 

ss 200 250 250 300 

TEST 200 300 200 100 
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Table 6.14 Classification performance of Leam-M- using 

Mahalanobis distance for combining classifiers 

M 
SI 99.2% 89.2% 88.2% 

S: - 86.5% 88.1% 

s ,  - - 96.4% 

s  99.2% 87.5% 91.2% 

TEST 57.0% 70.5% 83.8% 

—I— •• • — 1 

A 
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1 

1 1 T 1 
50 
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Figure 6.10 Corresponding DWT coefficients (a) crack, (b) LOF, (c) slag, (d) porosity 
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Table 6.14 presents the classification results of the algorithm on this data, illustrating a 

very familiar pattern of classification performance. This appears to be the signature of the 

Leam-h- algorithm. As we have observed with other databases, Leam++ improved the per­

formance on any given dataset from upper 50% levels (not shown in Table 6.14) of individ­

ual hypotheses to upper eighty and ninety percent levels. Also as in earlier cases, the per­

formance on previous training datasets deteriorates slightly as new data are included, but the 

performance on the validation (JEST) data improves dramatically. 

As a performance comparison, the same database was also used to train and test a single 

strong learner, a 149x40x12x4 two hidden layer MLP with an error goal of 0.001. The best 

test data classification performance of the strong learner has been around 75% [178], despite 

the fact that the strong learner was trained with instances from all classes. 

6.11.3 Ultrasonic Weld Inspection Database - Cscans 

The ultimate test for the Leam-h- was given by testing its performance on UWI C-scan 

datasets, where each C-scan constituted of A-scans in a 3D volume. This dataset was divided 

into two parts: The first part, the training dataset, consisted of 109 C-scan images from which 

a total of 2200 A-scans were randomly selected and used for training Leam-h- as described in 

Section 6.11.2. Not all images were used for training, however, since A-scans were randomly 

chosen. Furthermore, not all signals in this training set were used for training. In particular, 

those 800 signals used for testing were never seen by any of the networks. The second part of 

the C-scan dataset was the validation dataset. A-scans Irom this dataset were never seen by 

the networks. There were 50 C-scans in this database. 
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The procedure for classifying the C-scans was as follows: Along with the dataset, the ex­

act locations of each flaw, as well as the type of the flaw, was known ahead of time, since 

each sample was previously hand scored using a combination of techniques, including ultra­

sonic and radiographic methods. 

The flaw location on the C-scan image was carefully selected by a rectangular box cur­

sor, and the A-scans which fell into this rectangular region were classified by Leam++ using 

the weighted majority voting, where the weights were determined according to Mahalanobis 

distance defined in Equation 6.33. A classification image was generated, based on the classi­

fication of each A-scan. The classification image was then post processed using a modified 

median filtering to remove isolated pixels, such as a single crack indication inside a large 

LOF area, or a very small porosity indication inside a very large slag area. Typically such 

indications are not common in practice (but do occur occasionally'), and median filtering is 

effectively used to remove isolated indications from an image. Table 6.15 summarizes the 

comparative results of Leam-H- and a strong learner on training and validation datasets. 

•> 

~ Median fillcring generally improves the visual interpretation of the result quite significantly. The only ex­

ception was for a porosity sample, in which the porosity region was known to be 0.1 inches long, roughly equal 

to the scanning resolution. It was quite encouraging to notice that Learn-M- pinpointed this extremely small po­

rosity indication inside a large crack/LOF region. Post processing obviously removed this isolated pixel, as 

shown in the corresponding C-scans Tor this sample in Figure A4.7. In all other cases, the post-processed classi­

fication at the indicated region was considered as the flnal classification. 
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Table 6.15 Comparison of Learn-H- and strong learner on C-scans UWI data 

m 
Stroiif^ Stroiif^ 

106 8/1 92.4 % 50 11/2 77.1% 
Learner 

Learn++ 106 1/0 99.1% 50 7/4 84.8% 

For C-scan classification, both Leam-t-f and the strong learner had samples that were 

classified as unknown. These refer to the cases where an equal number of A-scans from a 

given region had different classiflcations. It is also interesting to note that the only misclassi-

fication of Leam-H- on the training data was in classifying an LOF a "slag" which was also 

called a slag by the strong learner. For the validation data, out of the 7 misclassifled samples, 

4 agreed with the classification of the strong learner. Appendix IV shows examples of origi­

nal C-scan images and classification C-scan images obtained by Leam++. 

6.12 Confidence of Learn-(-»- in Its Decision 

A classification algorithm that is capable of predicting its own reliability can be ex­

tremely valuable in evaluating the classification decisions. For example, decisions of false 

alarms can result in significant financial loss for industries since such decisions would re­

quire replacement of expensive undamaged components. Knowing the level of confidence in 

the classification decision would therefore be of paramount importance in industrial applica­

tions. Statistical analysis of classification results through hypothesis testing which uses the 

prior and post probabilities of expected outcomes can provide a good measure of the reliabil­
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ity of the classification outcome, as shown by Ramuhaili [179]. However, these probabilities 

are often unknown and need to be estimated from the noisy data. 

A very intuitive and straightforward alternative to estimating the reliability of the classi­

fication outcome is actually built in to the Leam-h- algorithm. Recall that Leam-H- is based 

on a weighted majority voting of multiple hypotheses trained with similar data. Therefore, 

the relative difference between the votes each class receives can be interpreted as how 

strongly Leam-h- is confident about its decision. Essentially, if the majority of the (weighted) 

hypotheses agree on the class of a particular instance, we can interpret this outcome as a high 

confidence decision. If, on the other hand, the individual hypotheses votes are distributed 

equally among different classes, the final decision can be interpreted as a low confidence de­

cision. 

To formalize this approach, recall that the hypotheses are combined through 

as described in Section 6.7, where h,(.x) is the r*'' hypothesis and log(l/) is the weight of the 

t''' hypothesis. For Leam+-»- using Mahalanobis distance, hypotheses are combined by 

where A/W, is the Mahalanobis weight of the /''* hypothesis as described in Equation 6.33. For 

either of the combination schemes, let us assume that there are a total of T hypotheses gener­

ated in K training sessions for classifying instances into one of C classes. We can then define 

the total vote that class c receives, as 

<:=l /Ji,lt)=y Pt 
(6.35) 

k 
=argmax5; 

i- = l fh / r^=rv /t=l r/i,(.r)=y 
(6.36) 
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for original Leara + + 
rJ>,(.x)=c Pt , \ T I n 

t = \, --,T, c = [,•••,€ (6.37) 

= X + + with Mahalanobi s 
f;/i,(.t)=c 

The final classification will then be the class for which ^ is maximum. Normalizing the 

votes received by each class 

ic=4^ (6-38) 

SI. 
c=l 

allows us to interpret ^ as a measure of reliability of the decision on a 0 to 1 scale, with 1 

corresponding to maximum reliability and 0 to no reliability. It should strictly be noted how­

ever that normalized ^ values do not represent the accuracy of the results, nor is it related to 

the statistical definition of conlldence intervals determined through hypothesis testing. It is 

merely a measure of the confidence of the algorithm in its own decision, which we will call 

the reliability of the decision. Keeping this distinction in mind, we can heuristically define 

the following ranges: 

0.0  ̂ reliability 

0.4 < < 0.5 Low reliabilitv 
(6.39) 

0.5 < Sc 0.75 => Medium reliability 

0J5<^^ <\.0=> High reliability 

A reliability analysis was performed for the mixture VOC database and the UWI data­

base, based on the above described interpretation of the final voting results. Table 6.16 pre­

sents the reliability analysis of the original Leam-H- classification on V(X! mixture data. 
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Table 6.16 Leam-H- confidence analysis on VOC mixture data 

Ethanol Octane Toluene Xylene TCE LEARN+-I- Conrect 
« Vote Vote Vote Vote Vote Oecieion Claee Reliability 
1 0.834 0.000 0.100 0.067 0.000 ETHANOL ETHANOL H 
2 0.777 0.000 0.156 0.067 0.000 ETHANOL ETHANOL H 
3 0.777 0.000 0.156 0.067 0.000 ETHANOL ETHANOL H 
4 0.785 0.000 0.149 0.067 0.000 ETHANOL ETHANOL H 
5 0.702 0.000 0.231 0.067 0.000 ETHANOL ETHANOL M 
6 0.309 0.000 0.483 0.160 0.048 TOLUENE ETHANOL VL 
7 0.834 0.000 0.084 0.067 0.016 ETHANOL ETHANOL H 
8 0.000 0.822 0.074 0.082 0.022 OCTANE OCTANE H 
9 0.000 0.751 0.145 0.082 0.022 OCTANE OCTANE H 
10 0.000 0.725 0.145 0.108 0.022 OCTANE OCTANE M 
11 0.000 0.751 0.145 0.082 0.022 OCTANE OCTANE H 
12 0.000 0.751 0.145 0.082 0.022 OCTANE OCTANE H 
13 0.160 0.235 0.179 0.393 0.032 XYLENE OCTANE VL 
14 o.ooo 0.751 0.145 0.082 0.022 OCTANE OCTANE H 
15 0.000 0.789 0.107 0.082 0.022 OCTANE OCTANE H 
16 0.031 0.000 0.515 0.091 0.364 TOLUENE TOLUENE M 
17 0.051 0.000 0.524 0.061 0.364 TOLUENE TOLUENE M 
18 0.051 0.027 0.443 0.124 0.355 TOLUENE TOLUENE L 
19 0.061 0.031 0.542 0.061 0.304 TOLUENE TOLUENE M 
20 0.061 0.031 0.510 0.061 0.337 TOLUENE TOLUENE M 
21 0.031 0.027 0.243 0.302 0.397 TCE TOLUENE VL 
22 0.051 0.000 0.529 0.098 0.322 TOLUENE TOLUENE M 
23 0.000 0.751 0.145 0.082 0.022 OCTANE TOLUENE H 
24 0.000 0.031 0.324 0.249 0.397 TCE TOLUENE VL 
25 0.000 0.502 0.156 0.302 0.041 OCTANE TOLUENE M 
26 0.051 0.000 0.529 0.075 0.345 TOLUENE TOLUENE M 
24 0.000 0.091 0.259 0.474 0.176 XYLENE XYLENE L 
27 0.000 0.102 0.287 0.532 0.080 XYLENE XYLENE M 
28 0.000 0.091 0.259 0.532 0.118 XYLENE XYLENE M 
29 0.000 0.196 0.259 0.457 0.087 XYLENE XYLENE L 
30 0.355 0.000 0.184 0.239 0.222 ETHANOL XYLENE VL 
31 0.000 0.113 0.320 0.513 0.054 XYLENE XYLENE M 
32 0.000 0.031 0.324 0.249 0.397 TCE TCE VL 
33 0.031 0.027 0.443 0.144 0.355 TOLUENE TCE L 
34 0.000 0.031 0.324 0.249 0.397 TCE TCE VL 
35 0.000 0.058 0.270 0.275 0.397 TCE TCE VL 
36 0.000 0.031 0.375 0.197 0.397 TCE TCE VL 
37 0.092 0.027 0.462 0.159 0.260 TOLUENE TCE L 
38 0.000 0.031 0.324 0.249 0.397 TCE TCE VL 
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Table 6.16 is a partial list of all instances in the TEST dataset explained in Table 6.7 in 

Section 6.9.6. In the first five columns, the vote each class received for each instance is pro­

vided as computed according to Equations 6.37 through 6.39. The Leam-H- classification and 

the correct class are then given in the next two columns followed by the estimated reliability 

of the decision. In the last column, H is for high confidence, M is for medium confidence, L 

is for low confidence and VL is very low confidence, as determined according t J Equation 

6.39. 

A number of interesting observations can be made from this table where all misclassified 

instances are indicated in bold. First, note that most misclassifications have low or very low 

confidences, with only one high and one medium confidence. The second interesting obser­

vation is that the confidence in correct classification tends to deteriorate towards the bottom 

of the table, which corresponds to instances of classes added during the incremental learning. 

Recall from Section 6.9.6 that xylene and TCE were added later to the training database dur­

ing the second and third training sessions. 

Table 6.17 presents similar information for Leam-h- with Mahalanobis distance, com­

puted according to Equation 6.32. Note that most misclassified instances still have low con­

fidences, though there are a few more medium confidence misclassifications in this case. 

Also note that the deterioration in the correct classification confidence levels is considerably 

less severe when Mahalanobis distances are used for weighting the hypotheses. There were 

no correct classification with low confidence, and most correct classifications had high con­

fidence. Considering that the weights of hypotheses were computed on an instance by in­

stance basis, these results make intuitive sense. 
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Table 6.17 Learn-H- with Mahalanobis confidence analysis on VOC mixture data (I) 

# 
Ethanol 

Vote 
Octane 

Vote 
Toluene 

Vote 
Xylene 
Vote 

TCE 
Vote 

LEARN-i"  ̂
Decision 

Correct 
Class 

Reliability 

1 1.000 0.000 0.000 0.000 0.000 H 
2 1.000 0.000 0.000 0.000 0.000 H 
3 0.874 0.000 0.126 0.000 0.000 H 
4 1.000 0.000 0.000 0.000 0.000 H 
5 1.000 0.000 0.000 0.000 0.000 H 
6 0.940 0.000 0.060 0.000 0.000 H 
7 0.000 1.000 0.000 0.000 0.000 H 
8 0.000 0.978 0.022 0.000 0.000 OCTANE OCTANE H 
9 0.000 0.956 0.044 0.000 0.000 OCTANE OCTANE H 
10 0.000 1.000 0.000 0.000 0.000 OCTANE OCTANE H 
11 0.000 1.000 0.000 0.000 0.000 OCTANE OCTANE H 
12 0.000 0.627 0.000 0.373 0.000 OCTANE OCTANE M 
13 0.000 0.166 0.280 0.168 0.386 TCE VL 
14 0.000 0.775 0.000 0.225 0.000 OCTANE OCTANE H 
15 0.000 0.000 0.236 0.161 0.604 TCE TOLUENE MA 
16 0.000 0.000 1.000 0.000 0.000 H 
17 0.000 0.000 1.000 0.000 0.000 H 
18 0.000 0.000 1.000 0.000 0.000 H 
19 0.000 0.000 1.000 0.000 0.000 H 
20 0.000 0.000 0.054 0.468 0.478 TCE 1 TOLUENE VL 
21 0.569 0.000 0.431 0.000 0.000 ETHANOU TOLUENE M 
22 0.000 0.578 0.108 0.314 0.000 TOLUENE IM 
23 0.000 0.000 1.000 0.000 0.000 H 
24 0.000 0.000 0.471 0.021 0.508 TCE ] TOLUENE Ml 
25 0.000 0.000 1.000 0.000 0.000 H 
26 0.000 0.000 0.030 0.970 0.000 XYLENE XYLENE H 
27 0.000 0.000 0.107 0.893 0.000 XYLENE XYLENE H 
28 0.000 0.016 0.101 0.884 0.000 XYLENE XYLENE H 
29 0.000 0.000 0.108 0.892 0.000 XYLENE XYLENE H 
30 0.000 0.000 0.112 0.888 0.000 XYLENE XYLENE H 
31 0.075 0.000 0.409 0.516 0.000 XYLENE XYLENE M 
32 0.000 0.000 0.091 0.909 0.000 XYLENE XYLENE H 
33 0.000 0.000 0.231 0.052 0.717 TCE TCE M 
34 0.000 0.000 0.273 0.117 0.610 TCE TCE M 
35 0.000 0.000 0.189 0.048 0.763 TCE TCE H 
36 0.000 0.000 0.580 0.000 0.420 TOLUENE TCE M 
37 0.000 0.000 0.205 0.047 0.748 TCE TCE M 
38 0.000 0.000 0.257 0.107 0.636 TCE TCE M 
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Finally, Table 6.18 presents a similar confidence analysis table for the second version of 

Leam-H- using Mahalanobis distance for combining classifiers, where Mahalanobis distance 

was computed as given in Equation 6.33. Although the performance of this algorithm was 

significantly better than that of the previous one (compare tables 6.11 and 6.12), there was 

not a significantly noticeable difference in the reliability levels. 

However, one notable observation is that there is no longer a significant deterioration in 

the confidence levels of classification for the instances presented in the later stages of the 

training. Similar to the previous case, most correctly classified instances had high confi­

dence, and most misclassified instances had low or medium confldences. Similar reliability 

measure analysis was also performed for the UWl database, and comparable results were ob­

tained. 

Tables 6.16 through 6.18 demonstrate that normalized weights that are used to combine 

hypotheses can indeed be interpreted as the reliability of the classification. Furthermore, as 

we note from Tables 6.16 through 6.18 for most cases, the reliability levels for correctly clas­

sified instances were typically high, whereas those of misclassified instances were generally 

low or medium, which is undoubtedly comforting to know, when important decisions need to 

be made. 

6.13 Conclusions and Future Work 

A new technique, Leam++, has been proposed which, in principle, allows any learning 

algorithm to learn incrementally. Simulations have been performed on a number of databases 

of varying difficulties to show the feasibility of the approach. 
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Table 6.18 Learn-H- with Mahalanobis confidence analysis on VOC mixture data (II) 

# 
Ethanol 

Vote 
Octane 

Vote 
Toluene 

Vote 
Xylene 
Vote 

TCE 
Vote 

LEARN+> 
Decision 

Correct 
Class 

Reliability 

1 0.981 0.000 0.010 0.008 0.000 ETHANOL ETHANOL H 
2 1.000 0.000 0.000 0.000 0.000 ETHANOL ETHANOL H 
3 1.000 0.000 0.000 0.000 0.000 ETHANOL ETHANOL H 
4 1.000 0.000 0.000 0.000 0.000 ETHANOL ETHANOL H 
5 1.000 0.000 0.000 0.000 0.000 ETHANOL ETHANOL H 
6 0.695 0.000 0.305 0.000 0.000 ETHANOL ETHANOL M 
7 0.997 0.000 0.003 0.000 0.000 ETHANOL ETHANOL H 
8 0.000 1.000 0.000 0.000 0.000 OCTANE OCTANE H 
9 0.000 0.910 0.090 0.000 0.000 OCTANE OCTANE H 
10 0.000 1.000 0.000 0.000 0.000 OCTANE OCTANE H 
11 0.000 0.769 0.135 0.096 0.000 OCTANE OCTANE H 
12 0.000 0.527 0.348 0.065 0.061 OCTANE OCTANE M 
13 0.000 0.824 0.126 0.050 0.000 OCTANE OCTANE H 
14 0.000 0.914 0.086 0.000 0.000 OCTANE OCTANE H 
15 0.000 0.000 0.993 0.000 0.007 TOLUENE TOLUENE H 
16 0.000 0.000 1.000 0.000 0.000 TOLUENE TOLUENE H 
17 0.000 0.000 0.388 0.384 0.228 TOLUENE TOLUENE VL 
18 0.714 0.000 0.286 0.000 0.000 ETHANOL TOLUENE M 
19 0.000 0.000 0.268 0.676 0.055 XYLENE TOLUENE M 
20 0.000 0.000 0.303 0.697 0.000 XYLENE TOLUENE M 
21 0.000 0.141 0.594 0.265 0.000 TOLUENE TOLUENE M 
22 0.000 0.000 1.000 0.000 0.000 TOLUENE TOLUENE H 
23 0.034 0.000 0.966 0.000 0.000 TOLUENE TOLUENE H 
24 0.000 0.000 0.111 0.889 0.000 XYLENE XYLENE H 
25 0.000 0.000 0.080 0.920 0.000 XYLENE XYLENE H 
26 0.000 0.000 0.250 0.750 0.000 XYLENE XYLENE H 
27 0.000 0.217 0.489 0.284 0.000 TOLUENE XYLENE L 
28 0.000 0.000 0.101 0.899 0.000 XYLENE XYLENE H 
29 0.040 0.000 0.049 0.911 0.000 XYLENE XYLENE H 
30 0.000 0.000 0.467 0.443 0.090 TOLUENE XYLENE L 
31 0.000 0.000 0.192 0.808 0.000 XYLENE XYLENE H 
32 0.000 0.000 0.172 0.014 0.815 TCE TCE H 
33 0.000 0.000 0.330 0.018 0.652 TCE TCE M 
34 0.000 0.000 0.965 0.012 0.023 TOLUENE TCE H 
35 0.000 0.000 0.195 0.013 0.792 TCE TCE H 
36 0.000 0.000 0.111 0.007 0.882 TCE TCE H 
37 0.000 0.000 0.73S 0.000 0.265 TOLUENE TCE M 
38 0.000 0.000 0.083 0.008 0.910 TCE TCE H 
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Leam++ simply attempts to divide a difficult classification problem into smaller sub 

problems, assigns these sub problems to weak learning algorithms, and combines the outputs 

using a weighted majority-voting scheme. The underlying assumption is that new data is 

composed of data from previously unseen or under represented regions of the pattern space, 

and that simple learning algorithms can be used to learn data coming from these regions. 

The main advantage of this approach is that it is very flexible and versatile, and it is inde­

pendent of the classification algorithm. The algorithm is intuitively simple and easy to im­

plement. It typically runs much faster than strong learning algorithms. Use of weak learning 

algorithms also eliminates the problem of over fitting since these learners only grossly ap­

proximate the instance space. 

Indisputably, one of the important features of Learn-h- is its ability to predict the reliabil­

ity of its classification. In Leam-h-, the built-in voting mechanism is exhibited so that classi­

fications made by winning a strong majority voting are interpreted as high reliability classifi­

cations, whereas those winning by narrow margins are interpreted as low reliability classifi­

cations. 

The main disadvantage of Leam-h- is the requirement of significantly high storage capac­

ity. Although it uses weak learning algorithms, which have fewer parameters than their 

strong counterparts, the total number of parameters can be quite high when an ensemble of 

these algorithms needs to be saved. This disadvantage, however, is becoming less of an issue, 

because the current technology allows exponentially increasing data storage capabilities. 

Finally, various additional improvements to the algorithm can be proposed as future 

work. In particular, a more robust distribution update rule and alternate schemes for combin­

ing the hypotheses will be topics for future exploration. Leam-h- has been diligently tested 
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using MLP type neural networks since MLP is the most commonly used network architecture 

in practice. However, evaluating the performance of Leam-M- using other classification algo­

rithms also remains to be done. 

Another interesting application would be using Leam-h- to combine classifiers that are 

trained with different features. Such a scheme would then qualify for not only an incremental 

learning algorithm, but also a data fusion algorithm. Intuitively, Leam-h- would then work as 

follows; Various databases using different features corresponding to the same classification 

problem would make the , <S=1,...,K databases mentioned in figures 6.3 and 6.6. A set of 

hypotheses would be generated from each of these databases which could then be combined 

by a weighted majority voting. However, since databases of different features would be inde­

pendent of each other, an appropriate distribution update rule and an appropriate weighting 

scheme for voting would need to be developed. Data fusion using Leam-h- constitutes one of 

the exciting directions for future work. 
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CHAPTER 7 

SUMMARY, CONCLUSIONS AND DISCUSSION 

Three major issues have been identified and addressed in this research for the identifica­

tion of VOCs using piezoelectric crystals as mass sensors. It has been shown that these issues 

are actually special cases of the more general problems in signal processing, pattern recogni­

tion and computational learning. Various approaches to these problems, namely increasing 

pattern separability for databases of overlapping classes, optimum selection of features and 

incrementally learning from new data, have been proposed, described and analyzed. The per­

formances of all proposed techniques have been carefully tested on many databases of vary­

ing levels of difficulty, including the VOC database. 

7.1 Increasing Pattern Separability 

In the real world, data are often corrupted with noise and acquired with sensors that are 

not selective or sensitive enough for the application. This results in a database with overlap­

ping clusters. This phenomenon causes a significant challenge to automated analysis of sig­

nals. Developing intelligent algorithms for increasing the intercluster distances within the 

data is one conceivable solution to this problem. Three such algorithms were presented. 

7.1.1 Neuro-Fuzzy Inference Systems 

In the first approach a fiizzy inference system was designed and implemented to identify 

the dominant components of VOC mixtures, followed by a MLP type neural network identi­

fying the secondary components. This approach has the advantage of being very intuitive and 
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easy to construct, and it is capable of dealing with noisy data. For problems with a reasonable 

number of input features, the fiizzy inference system can be hand-designed, giving the user 

an unprecedented amount of control on the automated classification system. However, for 

complicated tasks with multiple inputs, constructing an intuitive fuzzy inference system be­

comes increasingly difficult, because such systems require clustering algorithms for deter­

mining tlizzy membership functions, effectively removing the control away from the user. 

The advantage of iuzzy inference systems over neural networks is that they are not black 

boxes like neural networks; hence, their reasoning for a particular classification decision can 

be traced down. Determining the reason for a particular classification decision is often im­

possible for all but the most trivial neural networks, due to their massively interconnected 

structure. However, such a massively interconnected structure of features provides a more 

powerful classifier then a hand designed fuzzy inference system. 

7.1.2 Feature Range Stretching 

The second approach, feature range stretching (FRS), was based on the idea of increasing 

dynamic ranges of the features to increase the separability of patterns by increasing their in-

tercluster distances. The performance of this approach was slightly better than that of the 

fuzzy system, although E^S also increases intracluster distances, a non-desirable side effect 

of the algorithm. This approach also has the computational burden of computing a stretching 

function for each of the features. This can be difficult for signals of high dimensionality. 

7.1.3 Nonlinear Cluster Transformations 

The third approach, non linear cluster transformation (NCT), was designed to address the 

shortcomings of the FRS approach. In particular, NCT increases intercluster distances with­
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out increasing intraciuster distances through translating pattern clusters in the feature space in 

optimal directions. The optimal directions were first determined by using a training dataset, 

and then learned using a generalized regression neural network. This method performed bet­

ter then previous methods. The feasibility of this approach was also demonstrated on various 

databases. 

7.2 Optimal Feature Subset Selection 

Methods for increasing pattern separability are useful whenever a database of overlap­

ping clusters needs to be analyzed. Closely related to this i.ssue is the problem of identifying 

an optimum set of features from a given large pool of features. Selecting the right features 

can significantly reduce the complexity of the classifier, along with providing computational 

advantages of dealing with a smaller dataset. Two approaches were proposed for the opti­

mum selection of features. The fa's! approach was using a decision tree algorithm, such as 

C5.0, based on Quinlan's Iterative Dichotomizer 3 (ID3). In the second approach, an organ­

ized search technique, hill climb with wrapper, was proposed to obtain the minimum set of 

optimal features. The features obtained by this technique were not only smaller in their car­

dinality, but their classification performance was also better than that of the CS.O determined 

features. As in any organized heuristic search technique, hill climbing is computationally 

complex, and a simple statistical variance analysis was also implemented to reduce this com­

putational burden. 

It should be noted that both of these methods, as well as other techniques on feature sub­

set selection, work under the assumption that there is a set of features available and finding 

the best subset of these features is desired. The real challenge would be identifying the opti­
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mum features from a raw dataset, rather than fmding the best subset. In other words, the chal­

lenge is automatically identifying the right feature extraction scheme for a given dataset and 

the classification problem. As a simple example, consider the circular regions database, illus­

trated in Figure 6.7. The features for this database were the (x,y) coordinates of individual 

points. A typical classifier, such as a MLP neural network, takes various weighted combina­

tions of these features and determines nonlinear boundaries as decision surfaces. Another 

classifier, such as a RBF neural network, would in turn try to generate these decision bounda­

ries through fitting Gaussians to the input/output relationship of the data. In fact, all that is 

required to correctly cluster these points are their distances from the origin. Therefore, the 

problem is to develop an algorithm that can analyze the data and identify the distances of 

points from the origin as useflil features. 

This challenge, requiring that the algorithm be able to extract features that are optimal for 

the specific classification problem is of paramount importance for the advancement of auto­

mated data analysis. In fact, overcoming the challenge of automatically extracting useful fea­

tures could effectively make the above described methods for feature subset selection and 

increasing pattern separability obsolete. It should be noted that this challenge is also of inter­

disciplinary nature, requiring close collaboration on pattern recognition, signal processing, 

intelligent agents, and quite possibly neurophysiology research. 

7.3 Incremental Learning 

Finally, the problem of incrementally learning from new data, without forgetting what 

has been previously learned, in the absence of the original data has been addressed. This 

problem arises in many applications where a system is initially trained with a database, and 
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when a new set of data arrives, the original data is no longer available. Most popular classifi­

cation algorithms, including MLPs are not capable of learning incrementally, and Leam-h-

was developed to give all such classification algorithms the capability of learning from new 

data. 

Three different scenarios were considered. In the simplest case, the system was asked to 

learn from new data that did not include any new class information, simply to improve its 

classification performance. In the second case, the problem was made considerably more dif­

ficult by asking the system to learn patterns coming from a new class not encountered before. 

In the last case, the restriction of not having the prior data was slightly relaxed, and the algo­

rithm was allowed to keep some statistical information, such as mean and covariance matrix 

of the data for future training sessions. 

Leam-h", which is based on the collective performance of an ensemble of classifiers, was 

tested with a number of databases for each scenario. It was shown that Leam-h- was able to 

learn incrementally from new data regardless of how simple or challenging the database was. 

Leam-h- was also shown to be usetlil in determining its confidence in its classification deci­

sions. 

It is hoped that Leam -h-, will provide a valuable tool for all researchers involved in 

automated classification systems and computational models of learning and take its place 

among the select few algorithms that are capable of incremental learning. 
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7.4 Concluding Remarks 

As mentioned in the introduction, the research described in this dissertation is an excel­

lent example of interdisciplinary nature of the challenges we face today. In the preceding 

chapters, the problem of identifying volatile organic compounds has been introduced and it 

has been shown that it is truly an interdisciplinary problem. It requires expertise in many ar­

eas, such as 

• analytical chemistry, since the problem involves chemical sensors, their physical 

and chemical properties, 

• electrical engineering, since the problem requires processing of signals and rec­

ognizing VOCs from their signature patterns, 

• computer science and optimization, since the problem requires expertise on artifi­

cial intelligence topics, such as incremental learning and optimum feature selec­

tion 

• biomedical engineering and olfactory physiology since the problem is closely re­

lated to mimicking the human olfactory system. 

We therefore see that the clear-cut boundaries that once separated various fields, such as 

life sciences from engineering or computer sciences from physical sciences have been 

crossed due to the interdisciplinary nature of the problems we face today. We also see new 

research fields being formed from the merging of various other disciplines, including 

bioinformatics, genetic engineering, financial engineering, biomedical instrumentation, 

neural computation and neuro-engineering, among many others. 

I'his merging of disciplines undoubtedly changes the way we conduct research since a 

strong collaboration is indispensable for the success of the research project. However, it 
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should also change the way future generations of scientists are trained. Developing new in­

terdepartmental programs and majors such as electro-biomedical artificial intelligence and 

neuropysiological computational engineering with emphasis on analytical chemistry could 

be a first step. 
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APPENDIX I 

CHEMICAL STRUCTURES OF THE VOCS 
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APPENDIX II 

FNOSE RULEBASE 
1. If (PIB is XL) and (DEGA is VS) and (SG is S) and (OV275 is VS) and (PDPP is VS) then 

(VOCl isOC) 

2. If (APZ is L) and (PIB is XL) and (OV275 is S) and (PDPP is S) then (VOCl is OC) 

3. If (PIB is XL) and (DEGA is VS) and (SG is M) and (OV275 is VS) then (VOCl is OC) 

4. If (DEGA is M) and (SG is M) and (OV275 is M) and (PDPP is M) then (VOCl is OC) 

5. If (DEGA is VS) and (SG is VL) and (OV275 is VS) and (PDPP is VS) then (VOCl is OC) 

6. If (DEGA is VS) and (SG is L) and (OV275 is VS) and (PDPP is VS) then (VOCl is OC) 

7. If (PIB is XL) and (PDPP is VS) then (VOCl is OC) 

8. If (SG is L) and (OV275 is VS) and (PDPP is S) then (VOCl is OC) 

9. If (APZ is XL) and (PIB is M) and (DEGA is L) and (SG is L) and (OV275 is L) and (PDPP is 

VL) then (VOCl is XL) 

10. If (APZ is VL) and (PIB is M) and (DEGA is L) and (SG is L) and (OV275 is L) and (PDPP is 

VL) then (VOCl is XL) 

11. If (SG is S) and (OV275 is M) and (PDPP is L) then (VOCl is XL) 

12. If (PIB is L) and (DEGA is L) and (SG is M) and (OV275 is L) and (PDPP is L) then (VOC1 is 

XL) 

13. If (PIB is L) and (DEGA is L) and (SG is M) and (OV275 is M) and (PDPP is L) then (VOCl is 

XL) 

14. If (APZ is VL) and (PIB is M) and (DEGA is VL) and (SG is VL) then (VOCl is XL) 

15. If (APZ is VL) and (PIB is VL) and (DEGA is M) and (SG is S) and (OV275 is S) then (VOC I is 

XL) 

16. If (DEGA is XL) and (SG is XL) and (OV275 is XL) then (VOCl is ET) 

17. If (APZ is VS) and (PIB is VS) and (DEGA is XL) and (OV275 is XL) then (VOC 1 is ET) 

18. If (SG is XL) and (OV275 is VL) and (PDPP is S) then (VOC I is ET) 

19. If (APZ is VS) and (PIB is S) and (DEGA is XL) and (SG is XL) and (OV275 is VL) and (PDPP is 

XL) then (VOCl is ET) 

20. If (APZ is VS) and (PIB is VS) then (VOC 1 is ET) 

21. If (PIB is XL) and (SG is XL) and (PDPP is VS) then (VOCl is ET) 

22. If (PIB is S) and (SG is XL) and (PDPP is XL) then (VOCl is ET) 
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23. If (APZ is VS) and (PIB is S) and (DEGA is XL) and (SG is XL) and (OV275 is VL) and (PDPP is 

VL)then(VOCl is ET) 

24. If (DEGA is VL) and (SG is M) and (OV275 is VL) then (VOCI is TL) 

25. If (DEGA is VL) and (SG is L) and (OV275 is VL) then (VOCl is TL) 

26. If (DEGA is XL) and (SG is S) and (OV275 is VL) and (PDPP is XL) then (VOC I is TL) 

27. If (DEGA is VL) and (SG is VL) and (OV275 is VL) then (VOC 1 is TL) 

28. If (PIB is S) and (DEGA is XL) and (SG is XL) and (OV275 is VL) and (PDPP is VL) then 

(VOCl is TL) 

29. If (SG is L) and (OV275 is L) and (PDPP is L) then (VOCl is TL) 

30. If (SG is L) and (OV275 is L) and (PDPP is VL) then (VOCl is TL) 

31. If (PIB is M) and (DEGA is L) and (SG is M) and (OV275 is L) and (PDPP is VL) then (VOC 1 

is TL) 

32. If (PIB is M) and (DEGA is VL) and (SG is VL) and (OV275 is L) then (VOC 1 is TL) 

33. If (PIB is S) and (DEGA is VL) and (SG is XL) and (OV275 is VL) and (PDPP is XL) then 

(VOCl isTL) 

34. If (DEGA is S) and (SG is S) and (OV275 is S) then (VOCl is TCE) 

35. If (APZ is L) and (PIB is L) and (DEGA is M) and (SG is M) and (OV275 is M) and (PDPP is L) 

then (vex: 1 is TCE) 

36. If (APZ is M) and (PIB is L) and (DEGA is L) and (SG is M) and (OV275 is L) then (VOCl is 

TCE) 

37. If (PIB is VL) and (DEGA is M) and (SG is S) and (PDPP is M) then (VCX^l is TCE) 

38. If (DEGA is S) and (SG is M) and (OV275 is S) and (PDPP is M) then (VOCl is TCE) 

39. If (SG is S) and (OV275 is VS) and (PDPP is M) then (VOC 1 is TCE) 

40. If (PIB is VL) and (DEGA is M) and (SG is L) then (VCXT1 is TCE) 

41. If (APZ is L) and (PIB is VL) and (PDPP is M) then (VOCl is TCE) 

42. If (APZ is XL) and (PIB is VL) and (PDPP is M) then (VOC I is TCE) 

43. If (DEGA is S) and (PDPP is S) then (VOC I is TCE) 

44. If (APZ is VL) and (PIB is VL) and (PDPP is M) then (VOCl is TCE) 

45. If (PIB is L) and (DEGA is L) and (SG is VL) and (PDPP is L) then (VOCl is TCE) 

46. If (PIB is M) and (SG is XL) and (OV275 is VL) then (VOCl is TCE) 

47. If (DEGA is VS) and (SG is S) and (OV275 is VS) and (PDPP is S) then (VOCl is TCE) 

48. If (APZ is VL) and (PIB is XL) and (DEGA is VS) and (SG is VS) and (OV275 is VS) and 

(PDPP is S) then (VOCl is TCE) 
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49. If (APZ is M) and (PIB is VL) and (DEGA is M) then (VOCI is TCE) 

50. If (APZ is VL) and (PIB is XL) and (DEGA is VS) and (SG is M) and (OV275 is VS) and 

(PDPP is S) then (VOCI is TCE) 

51. If (APZ is M) and (PIB is VL) and (DEGA is M) and (SG is M) and (OV275 is M) and 

(PDPP is L) then (VCX: I is TCE) 

52. If (APZ is VL) and (PIB is VL) and (DEGA is S) and (SG is L) and (OV275 is S) and 

(PDPP is  M) then (V(X: I i s  OC) 

53. If (APZ is VL) and (PIB is XL) and (DEGA is VS) and (SG is VL) and (OV275 is L) and 

(PDPP is S) then (VOC! is OC) 

54. If (APZ is VL) and (PIB is VL) and (DEGA is M) and (SG is S) and (OV275 is VL) and 

(PDPP is S) then (VOCI is OC) 

55. If (APZ is XL) and (PIB is M) and (DEGA is VL) and (SG VL) and (OV275 is VL) and 

(PDPP is VL) then (VOCI is XL) 
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APPENDIX III 

FUZZY MEMBERSHIP FUNCTIONS 
OCTANE 

APZ S VL L L L VL L L L L L L L VL L L 
PIB XL XL XL XL XL XL XL XL VL XL XL XL XL XL XL XL 
DEGA VS VS VS VS S VS VS VS M S VS VS M S VS VS 
SG S S S S L M S S M M M S M M M M 
OV275 VS VS VS VS S VS VS VS M S VS VS M S S VS 
PDPP s VS VS VS S S VS VS M S S S M M S S 

lOCTANE 1 1501 3001 5001 7001 150] 3001 500 700 1501 3001 5001 7001 1501 3001 5001 7001 
150 150 150 150 300 300 300 300 500 500 500 500 700 700 700 700 

APZ VL XL VL VL VL VL VL VL XL VL VL VL VL VL VL L 
PIB XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
DEGA VS VS VS VL VS VS VS VS S VS VS VS M VS VS VS 
SG VL S S S VL L M XL VL L M XL VL L L 
OV275 VS VS VS VS VS VS VS VS S VS VS VS L S VS VS 
PDPP VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS 

OCTANE 
TCA 

150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 
500 

300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ VL VL L L XL VL VL VL VL VL VL VL VL VL VL VL 
PIB XL XL XL XL XL XL XL XL XL XL XL XL VL XL XL XL 
DEGA VS VS VS VS VS VS VS VS VS VS VS VS S VS VS VS 
SG M S S S L M S S L L M M L L M M 
OV275 VS VS VS VS VS VS VS VS VS VS VS VS S VS VS VS 
PDPP vs VS VS VS s VS VS VS s s VS VS M s S VS 

APZ VL VL VL L XL VL VL L VL VL L VL VL L L L 
PIB XL XL XL XL XL XL XL XL XL XL XL XL VL XL XL XL 
DEGA VS VS VS VS VS VS VS VS vs VS VS VS S VS VS VS 
SG M S S S VL M M M VL VL M M XL VL L L 
OV275 VS VS VS VS S VS VS VS L S VS VS VL S VS VS 
PDPP VS VS VS VS VS VS VS VS s VS VS VS S S VS VS 

APZ VL VL L L VL VL L L VL VL L L VL VL L L 
PIB XL XL XL XL XL XL XL XL XL XL XL XL VL XL XL XL 
DEGA VS VS VS VS VS VS VS VS s VS VS VS M VS VS VS 
SG S S S S S S S S S S S S S S S S 
OV275 VS VS VS VS S VS VS VS L S VS VS VL S S VS 
PDPP VS VS VS VS VS VS VS VS VS VS VS VS S VS VS VS 

Figure A3.1 Octane fuzzy membership functions 
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XYLENE 
XYLENE 1 150 
MEK 1 150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL VL VL L XL VL VL L XL VL VL L XL VL L L 
PIB M L L L M L L L M M L L M M L L 
DEGA L L L L L L L L VL L L L VL L L L 
SG L S S S L M M S VL L M M VL L M M 
OV275 L L M M L L M M VL L L L VL L L L 
PDPP VL L L L VL L L L VL L L L VL VL L L 

IXYLENE 1 150 300 500 700 150 300 500 700 150 300 500 700 150 300 500 700 
TCA 150 150 150 150 300 300 300 300 500 500 500 500 700 700 700 700 
APZ VL L L L VL L L L VL L L L VL L L L 
PIB L VL VL VL L L VL VL L L L L M L L L 
DEGA M L L M L L L M L L L M L L L L 
SG S S S S M M S S M M M S L M M M 
OV275 M M M M M M M M M M M M L M M M 
PDPP L L L L L L L L VL L L L VL L L L 

IACN I 150 
300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 
500 

300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL VL L L XL VL L L VL L L L VL L L L 
PIB L VL VL VL L VL VL VL L VL VL VL VL VL VL VL 
DEGA M M M M M M M M L M M M M M M M 
SG S S S S S S S S S S S S S S S S 
OV275 M M M M M M M M M M M M M M M M 
PDPP L L L L L L L L L L L L L L L L 

[XYLENE 150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 
500 

300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ VL VL L L XL L L L VL L L L VL L L L 
PIB L VL VL VL L L L VL M L L L M L L L 
DEGA L L M M L L L M VL L L L VL L L L 
SG M 8 S S M M S S VL M M S VL L M S 
OV275 L M M M L M M M L L M M VL L L M 
PDPP L L L L L L L L L L L L L L L L 

300 
150 150 

700 
150 

150 500 
300 

150 300 
500 

700 150 
700 

300 
700 

500 
700 

700 
700 

APZ VL L L L VL VL L L VL VL L L VL VL L L 
PIB VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 
DEGA M L M M M M M M M M M M M M M M 
SG S S S S S S S S S S S S S S S S 
OV275 M M M M M M M M S M M M S S M M 
PDPP L L L L L L L L M L L L M L L L 

Figure A3.2 Xylene fuzzy membership functions 
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ETHANOL 

APZ VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS 
PIB VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS 
DEGA XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
SG XL XL XL XL S VL XL XL VS s VL XL VS VS M VL 
OV275 XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
PDPP M M S S M M S L M M M L M M M 

150 300 500 700 150 300 500 700 150 300 500 700 150 300 500 700 
HEXANE 150 150 150 150 300 300 300 300 500 500 500 500 700 700 700 700 
APZ XL S VS VS VL L VS VS VL L M S L VL S M 
PIB S VS VS VS VL M S VS XL VL M S XL XL VL M 
DEGA XL XL XL XL L XL XL XL M VL XL XL S L VL XL 
SG XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
OV275 VL XL XL XL VL VL VL XL M VL VL VL S L VL VL 
PDPP 8 S S S 5 S S S VS s S S VS VS 8 S 

150 300 500 700 150 300 500 700 150 300 500 700 150 300 500 700 
TCA 150 150 150 150 300 300 300 300 500 500 500 500 700 700 700 700 
APZ M VS VS VS S VS VS VS VS vs VS VS S VS VS VS 
PIB S VS VS VS S S VS VS S S S S S S S S 
DEGA XL XL XL XL XL XL XL XL VL XL XL XL VL VL XL XL 
SG XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
OV275 VL VL XL XL VL VL VL VL VL VL VL VL VL VL VL VL 
PDPP XL VL VL L XL XL VL XL XL XL XL VL XL XL XL XL 

150 300 500 700 150 300 500 700 150 300 500 700 150 300 500 700 
MEK 150 150 150 150 300 300 300 300 500 500 500 700 700 700 700 
APZ VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS 
PIB VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS 
DEGA XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
SG XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
OV275 XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
PDPP VL L M M XL VL L L XL XL VL L XL XL VL VL 

Figure A3. 3 Ethanol fuzzy membership functions 
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TOLUENE 

ACN 
150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 300 
500 

500 
500 

700 150 
700 

300 
700 

500 
700 

700 
700 

APZ XL VL L M XL VL M M M M M 8 S M 8 S 
PIB S S M M S S S M VS S 8 S VS 8 S 8 
DEGA VL VL VL VL XL VL VL VL XL VL VL VL XL XL VL VL 
SG M M M L M M M M S M M M VS 8 M M 
OV275 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 
PDPP VL VL VL VL XL XL VL VL XL XL XL XL XL XL XL XL 

ITOLUENQ 150! 300| 5001 7001 150| 300| 500| 7001 150| 300| 500| 700| 150| 300| 500| 700| 
150 150 150 150 300 300 300 300 500 500 500 500 700 700 700 700 

APZ XL VL L L XL VL L M XL VL L M VL L M M 
PIB S S M S S M M S S 8 M S 8 S 8 
DEGA VL VL VL VL XL VL VL VL XL VL VL VL XL XL VL VL 
SG VL VL L L XL VL VL L XL VL VL VL XL XL VL VL 
OV275 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 
PDPP VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 

HEXANE 
150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 
500 

300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL VL L M XL VL L M XL VL L M VL L M M 
PIB M M M M L M M M VL L L M VL VL L L 
DEGA VL VL L L L L L L M L L L M M L L 
SG L L L L L L M M L L L M L L L L 
OV275 L L L L L L L L M L L L M L L L 
PDPP L VL VL VL L L VL VL M L L VL M L L L 

TCA 
150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 
500 

300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL L L M S L M M L M M M L M M S 
PIB S M M M S M M M M M M M M M M M 
DEGA VL VL VL VL XL VL VL VL VL VL VL VL VL VL VL VL 
SG L L L L M L L VL VL VL L L VL VL L L 
OV275 VL L L L L L L L L L L L L L L L 
PDPP XL VL VL VL L VL VL VL XL XL VL VL XL XL VL VL 

MEK 
150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 300 

700 
300 

150 300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ VL M S VS M S S VS S S S VS S 8 S 8 
PIB S S S VS 8 S 8 8 M S S 8 M M 8 8 
DEGA VL VL XL XL VL VL VL VL VL VL VL VL VL VL VL VL 
SG VL XL XL XL VL VL VL XL VL VL VL VL L VL VL VL 
OV275 VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL 
PDPP XL XL XL XL XL XL XL XL VL XL XL XL VL XL XL XL 

Figure A3.4 Toluene fuzzy membership functions 
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TOLUENE 

TCE 
150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 

500 
300 

700 
300 

150 300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL VL VL VL VL L L L L L L L M M M M 
PIB VL VL VL XL L VL VL VL L L VL VL L L L VL 
DEGA M S S S L M M S L M M M L L M M 
SG S S S S S S S S M M S S M M S M 
OV275 M S S S M M S S L M M M L L M M 
PDPP M M M M L L M M L L L L VL L L L 

TCE 
TCE 150 300 500 700 150 300 500 700 150 300 500 700 150 300 500 700 
TCA 150 150 150 150 300 300 300 300 500 500 500 700 700 700 700 
APZ XL VL VL L VL VL L L L VL L L L L L M 
PIB VL XL XL XL VL VL VL XL VL VL VL VL L VL VL VL 
DEGA S S S VS M S S S M M S S L M M S 
SG M S S S L M S S L L M M VL L L M 
OV275 S VS VS VS S S VS VS S S S VS M S S S 
PDPP M M M M M M M M L L M M L L L M 

TCE 150 300 500 700 150 300 500 700 150 300 500 700 150 300 500 700 
TCA 150 150 150 150 300 300 300 500 500 500 500 700 700 700 700 
APZ XL VL VL L VL VL L L L L M L S M M M 
PIB VL XL XL XL VL VL VL XL M VL VL VL M L VL VL 
DEGA S S S VS M S S S L M M S VL L M S 
SG L M S S VL L M M XL VL L M XL VL VL M 
OV275 M S S VS L M S S VL L L M VL VL L L 
PDPP M M M M M M M M L M M M VL L L M 

ITCE 150 
150 

300 
150 

500 
150 

700 
150 

150 
300 

300 
300 300 

700 
300 

150 
500 

300 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL XL VL VL XL XL VL VL XL VL L L VL VL VL L 
PIB VL XL XL XL VL VL XL XL L VL XL XL M VL VL VL 
DEGA S S S S L S S S VL L M S VL L M M 
SG M s S S VL L M S XL VL L M XL VL VL L 
OV275 S vs VS VS L S S S VL L M S VL L L M 
PDPP S s S M M M M M M M M M M M M M 

ITCE 1 150 300 
150 

500 
150 

700 
150 

150 300 
300 

700 150 
500 

500 
500 

700 
500 

150 
700 

300 
700 

500 
700 

700 
700 

APZ XL VS VL L XL VL VL L VL VL VL L VL VL VL L 
PIB XL VS XL XL XL XL XL XL XL XL XL XL XL XL XL XL 
DEGA VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS VS 
SG S VS VS S S S S S S S S S M S S S 
OV275 VS XL VS VS VS VS VS VS VS VS VS VS VS VS VS VS 
PDPP S VS S S S S S S S S S S S S S S 

Figure A3.5 TCE fuzzy memiiership functions 
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APPENDIX IV 

LEARN-I-4' C-SCAN CLASSIFICATION OF UWI SIGNALS 

C:8can imag« of NSWC111KB9602N1 

5 - 7  - 6  S -4 . 3  - 2  ' 1 0  
Y-Axis (Wave numbai) 

Ljamtt &tcan ClMsfficationjif NSV^ 

CRACK 

-2.4 -iy- :2.2 -̂ 2.1 -2 ' -1.9 -1.7 
• . •• •• .-t', ""J f V } ' J;".'! ^ •• 

Figure A4.1 Original C-scan and Leara-H- classification, correct class: Crack 
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( s( .in 

f 16.5 
3 
z 16 O) 
2 15,5 

S. 15 

I 14.5 
>< -7 

C-8can image of NSWC17KB9B02N1 

1 
1 

1 
» 

1 
1 

1 
1 

1 
1 1 

1 
...J... 

1 
1 

—t— 
1 
1 

.—J— 

-5 -4 -3 -2 
Y-Axis (Wave numbei) 

50 100 150 200 250 

S( .tn I l<)s siIk 

Eit EA Ibdi^^ffKlM ' 

Leam-H-C-scan Classification ofNSWC17KB9602N1 

15.4 

15.3 

15.2 

15.1 

151 

SLAG 

PGR 

LOF 

B6 

-2.2 .21 -2 .1.9 -1.8 -17 -1.6 

Figure A4.2 Original C>scan and Leam++ classification, correct class: Crack 
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-c « 
120 
3 
Z 
« 
2 19 

<0 

I 18 

Oscan image of NSWC19KB9602N1 

IK 

•8 .5 .it -3 -2 
Y-Axis (Wave numbeO 

Lsam-H-Oscan Classification of NSWC19KB6602N1 

CRACK 

-3.1 -3 -2.9 -2.8 '2.7 -2.6 

Figure A4.3 Original C-scan and Leam++ classification, correct class: Crack 
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i I SI ,)n liii.>()c E3 

Sa-.Tk'i 

C>8canimag0 of 1612mlofkb96(E2h1 

Y-Axis O^ave numbei) 

SI .tn I l<ts sifii .liinn 

Leam-M* C-8can Classtlication of 1612mlofkb9602n1 

Figure A4.4 Original C-scan and Leam++ classification, correct class: LOF 
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C-scan image of 191 mpokb9602n1 

Y-Axis (Wave number) 

s( .tn i l.)s sif K .ihon 
ftfBt'-gtW-jPr »:»W. >• • 

Leam-M-C-scan Classification of191mpokb9602n1 
6.5&I 

•286-28-27&2.7-2.66 

CRACK 

SLAG 

POR^ 

BG 

Figure A4.5 Original C-scan and Leam-M- classification, correct class: Porosity 
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I  M  < i r i  t i n < u | r  RR E3 

C-8can image of321mslgkb9602s1 

a> 8.6 -{• 

2 3 4 5 
Y-Axis (Wave number) 

-h-

50 100 150 200 250 

I  s (  . I D  I  l < ) s  s i M <  

Ear ^ : 

CRACK 

Leam-H> C-scan Classification of321mslgkb9602s1 

2.3 2.4 2.5 2.6 2.7 2.6 2.9 

Figure A4.6 Original C-scan and Learn-M- classification, correct class: Slag 
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^ C-tcmiinag«of1632ni|HMlib9G02ii1 

•| -1 
>c Y-Aiii (Wma numtwi) 

SO 100 ISO 200 2S0 

Bflbrt pott*proctttiM 

Leam-H> (>8can ClasellicMion of i622mport(b8602n1 
9.351 

SLAB 

FOR [=1 

LOF 

9.05 
•3.9^ -33 -3.85 -3.8 

Figure A4.7 Original C-scan and Leam-H- classification, correct class: Porosity 

The Leam++ classification before post processing is also provided for this sample. The po­

rosity indication for this sample was known to be extremely small (about 0.1 inches long, 

inside the white rectangular area in C-scan), and Leam-H- pinpointed the correct location of 

the porosity indication. However, post processing (modified median filtering) wiped out the 

porosity indication, since it is completely surrounded by crack and LOF indications. 
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Bitm pot^pncntlng 

Y-Axit (Nwm mimbat) 

.111 I 1.1. 1111 .1111 K R O  

L«am-H> C-scan Clauicalion of32tm8lokb9602n1 

p. 
J":. 

SLAG 

FOR 
LZU 

IflF 

B6 

Figure A4. 8 Original C-scan and Learn-H- classification, correct class: Slag 

This is an example of unknown classification, since all flaw types have been found by 

Leam-M- in the indicated region of interest shown by the black box. 
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